Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data
Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2022-04, Vol.23 (4), p.597-617 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 617 |
---|---|
container_issue | 4 |
container_start_page | 597 |
container_title | Journal of hydrometeorology |
container_volume | 23 |
creator | Gorooh, Vesta Afzali Asanjan, Ata Akbari Nguyen, Phu Hsu, Kuolin Sorooshian, Soroosh |
description | Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs. |
doi_str_mv | 10.1175/JHM-D-21-0194.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1980933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27247317</jstor_id><sourcerecordid>27247317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cfb0d5078b09577149d2b840f97c5e42f5287835648960385cdb4ce32ced70ea3</originalsourceid><addsrcrecordid>eNo9kU1PGzEQhleoSNDQMyckq720hwV_xutjRVKSCmhEQOJmOd5ZcBrWi-004sg_x9tFnOb1-JnRzLxFcUzwKSFSnP2eXZWTkpISE8VPyV5xSAQVpRScfPrQ4v6g-BzjGmPMFakOi9cJQIeuYRvMJoe08-EvmrmHR7TsTHI-wVPn-78biH6zzZkWLQJY17lk_r-mMbmnQX7vm5XL2-niB7qLrn1ACxOj-wfoytngdyYr09Zo3jbBBKjRxCRzVOw3ZhPhy3scFXe_prfns_Lyz8X8_OdlaZlQqbTNCtcCy2qFlZCScFXTVcVxo6QVwGkjaCUrJsa8UmPMKmHrFbfAqIVaYjBsVHwd-vo8sI7WJbCP1rct2KSJqrBiLEPfBqgL_nkLMem134Y2z6XpWAol5Zj01NlA5aViDNDoLuQbhBdNsO7N0NkMPdGU6N4MTXLFyVCxjsmHD5xKyiUjkr0BQOGGfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675977613</pqid></control><display><type>article</type><title>Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gorooh, Vesta Afzali ; Asanjan, Ata Akbari ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh</creator><creatorcontrib>Gorooh, Vesta Afzali ; Asanjan, Ata Akbari ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-21-0194.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Artificial neural networks ; Brightness temperature ; Cloud computing ; Computer applications ; Computing costs ; Deep learning ; ENVIRONMENTAL SCIENCES ; Estimates ; Feature extraction ; Geostationary satellites ; Information processing ; Information sources ; Infrared imaging ; Kalman filters ; Machine learning ; Meteorological satellites ; Meteorology & Atmospheric Sciences ; Neural networks ; Precipitation ; Precipitation estimation ; Precipitation intensity ; Precipitation systems ; Radar ; Radiometers ; Rainfall intensity ; Real time ; Resolution ; Satellite observations ; Sensors ; Spatial discrimination ; Spatial resolution ; Synchronous satellites</subject><ispartof>Journal of hydrometeorology, 2022-04, Vol.23 (4), p.597-617</ispartof><rights>2022 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-cfb0d5078b09577149d2b840f97c5e42f5287835648960385cdb4ce32ced70ea3</citedby><cites>FETCH-LOGICAL-c359t-cfb0d5078b09577149d2b840f97c5e42f5287835648960385cdb4ce32ced70ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1980933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorooh, Vesta Afzali</creatorcontrib><creatorcontrib>Asanjan, Ata Akbari</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data</title><title>Journal of hydrometeorology</title><description>Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brightness temperature</subject><subject>Cloud computing</subject><subject>Computer applications</subject><subject>Computing costs</subject><subject>Deep learning</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Estimates</subject><subject>Feature extraction</subject><subject>Geostationary satellites</subject><subject>Information processing</subject><subject>Information sources</subject><subject>Infrared imaging</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Meteorological satellites</subject><subject>Meteorology & Atmospheric Sciences</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Precipitation intensity</subject><subject>Precipitation systems</subject><subject>Radar</subject><subject>Radiometers</subject><subject>Rainfall intensity</subject><subject>Real time</subject><subject>Resolution</subject><subject>Satellite observations</subject><subject>Sensors</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Synchronous satellites</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kU1PGzEQhleoSNDQMyckq720hwV_xutjRVKSCmhEQOJmOd5ZcBrWi-004sg_x9tFnOb1-JnRzLxFcUzwKSFSnP2eXZWTkpISE8VPyV5xSAQVpRScfPrQ4v6g-BzjGmPMFakOi9cJQIeuYRvMJoe08-EvmrmHR7TsTHI-wVPn-78biH6zzZkWLQJY17lk_r-mMbmnQX7vm5XL2-niB7qLrn1ACxOj-wfoytngdyYr09Zo3jbBBKjRxCRzVOw3ZhPhy3scFXe_prfns_Lyz8X8_OdlaZlQqbTNCtcCy2qFlZCScFXTVcVxo6QVwGkjaCUrJsa8UmPMKmHrFbfAqIVaYjBsVHwd-vo8sI7WJbCP1rct2KSJqrBiLEPfBqgL_nkLMem134Y2z6XpWAol5Zj01NlA5aViDNDoLuQbhBdNsO7N0NkMPdGU6N4MTXLFyVCxjsmHD5xKyiUjkr0BQOGGfw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gorooh, Vesta Afzali</creator><creator>Asanjan, Ata Akbari</creator><creator>Nguyen, Phu</creator><creator>Hsu, Kuolin</creator><creator>Sorooshian, Soroosh</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220401</creationdate><title>Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data</title><author>Gorooh, Vesta Afzali ; Asanjan, Ata Akbari ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cfb0d5078b09577149d2b840f97c5e42f5287835648960385cdb4ce32ced70ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brightness temperature</topic><topic>Cloud computing</topic><topic>Computer applications</topic><topic>Computing costs</topic><topic>Deep learning</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Estimates</topic><topic>Feature extraction</topic><topic>Geostationary satellites</topic><topic>Information processing</topic><topic>Information sources</topic><topic>Infrared imaging</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Meteorological satellites</topic><topic>Meteorology & Atmospheric Sciences</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Precipitation intensity</topic><topic>Precipitation systems</topic><topic>Radar</topic><topic>Radiometers</topic><topic>Rainfall intensity</topic><topic>Real time</topic><topic>Resolution</topic><topic>Satellite observations</topic><topic>Sensors</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Synchronous satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorooh, Vesta Afzali</creatorcontrib><creatorcontrib>Asanjan, Ata Akbari</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorooh, Vesta Afzali</au><au>Asanjan, Ata Akbari</au><au>Nguyen, Phu</au><au>Hsu, Kuolin</au><au>Sorooshian, Soroosh</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><spage>597</spage><epage>617</epage><pages>597-617</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-21-0194.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2022-04, Vol.23 (4), p.597-617 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_osti_scitechconnect_1980933 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial neural networks Brightness temperature Cloud computing Computer applications Computing costs Deep learning ENVIRONMENTAL SCIENCES Estimates Feature extraction Geostationary satellites Information processing Information sources Infrared imaging Kalman filters Machine learning Meteorological satellites Meteorology & Atmospheric Sciences Neural networks Precipitation Precipitation estimation Precipitation intensity Precipitation systems Radar Radiometers Rainfall intensity Real time Resolution Satellite observations Sensors Spatial discrimination Spatial resolution Synchronous satellites |
title | Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20High%20Spatiotemporal%20Resolution%20Precipitation%20Estimation%20(Deep-STEP)%20Using%20Passive%20Microwave%20and%20Infrared%20Data&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Gorooh,%20Vesta%20Afzali&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2022-04-01&rft.volume=23&rft.issue=4&rft.spage=597&rft.epage=617&rft.pages=597-617&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-21-0194.1&rft_dat=%3Cjstor_osti_%3E27247317%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675977613&rft_id=info:pmid/&rft_jstor_id=27247317&rfr_iscdi=true |