Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data

Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2022-04, Vol.23 (4), p.597-617
Hauptverfasser: Gorooh, Vesta Afzali, Asanjan, Ata Akbari, Nguyen, Phu, Hsu, Kuolin, Sorooshian, Soroosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 4
container_start_page 597
container_title Journal of hydrometeorology
container_volume 23
creator Gorooh, Vesta Afzali
Asanjan, Ata Akbari
Nguyen, Phu
Hsu, Kuolin
Sorooshian, Soroosh
description Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs.
doi_str_mv 10.1175/JHM-D-21-0194.1
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1980933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27247317</jstor_id><sourcerecordid>27247317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cfb0d5078b09577149d2b840f97c5e42f5287835648960385cdb4ce32ced70ea3</originalsourceid><addsrcrecordid>eNo9kU1PGzEQhleoSNDQMyckq720hwV_xutjRVKSCmhEQOJmOd5ZcBrWi-004sg_x9tFnOb1-JnRzLxFcUzwKSFSnP2eXZWTkpISE8VPyV5xSAQVpRScfPrQ4v6g-BzjGmPMFakOi9cJQIeuYRvMJoe08-EvmrmHR7TsTHI-wVPn-78biH6zzZkWLQJY17lk_r-mMbmnQX7vm5XL2-niB7qLrn1ACxOj-wfoytngdyYr09Zo3jbBBKjRxCRzVOw3ZhPhy3scFXe_prfns_Lyz8X8_OdlaZlQqbTNCtcCy2qFlZCScFXTVcVxo6QVwGkjaCUrJsa8UmPMKmHrFbfAqIVaYjBsVHwd-vo8sI7WJbCP1rct2KSJqrBiLEPfBqgL_nkLMem134Y2z6XpWAol5Zj01NlA5aViDNDoLuQbhBdNsO7N0NkMPdGU6N4MTXLFyVCxjsmHD5xKyiUjkr0BQOGGfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675977613</pqid></control><display><type>article</type><title>Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gorooh, Vesta Afzali ; Asanjan, Ata Akbari ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh</creator><creatorcontrib>Gorooh, Vesta Afzali ; Asanjan, Ata Akbari ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-21-0194.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Artificial neural networks ; Brightness temperature ; Cloud computing ; Computer applications ; Computing costs ; Deep learning ; ENVIRONMENTAL SCIENCES ; Estimates ; Feature extraction ; Geostationary satellites ; Information processing ; Information sources ; Infrared imaging ; Kalman filters ; Machine learning ; Meteorological satellites ; Meteorology &amp; Atmospheric Sciences ; Neural networks ; Precipitation ; Precipitation estimation ; Precipitation intensity ; Precipitation systems ; Radar ; Radiometers ; Rainfall intensity ; Real time ; Resolution ; Satellite observations ; Sensors ; Spatial discrimination ; Spatial resolution ; Synchronous satellites</subject><ispartof>Journal of hydrometeorology, 2022-04, Vol.23 (4), p.597-617</ispartof><rights>2022 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-cfb0d5078b09577149d2b840f97c5e42f5287835648960385cdb4ce32ced70ea3</citedby><cites>FETCH-LOGICAL-c359t-cfb0d5078b09577149d2b840f97c5e42f5287835648960385cdb4ce32ced70ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1980933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorooh, Vesta Afzali</creatorcontrib><creatorcontrib>Asanjan, Ata Akbari</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data</title><title>Journal of hydrometeorology</title><description>Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brightness temperature</subject><subject>Cloud computing</subject><subject>Computer applications</subject><subject>Computing costs</subject><subject>Deep learning</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Estimates</subject><subject>Feature extraction</subject><subject>Geostationary satellites</subject><subject>Information processing</subject><subject>Information sources</subject><subject>Infrared imaging</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Meteorological satellites</subject><subject>Meteorology &amp; Atmospheric Sciences</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Precipitation intensity</subject><subject>Precipitation systems</subject><subject>Radar</subject><subject>Radiometers</subject><subject>Rainfall intensity</subject><subject>Real time</subject><subject>Resolution</subject><subject>Satellite observations</subject><subject>Sensors</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Synchronous satellites</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kU1PGzEQhleoSNDQMyckq720hwV_xutjRVKSCmhEQOJmOd5ZcBrWi-004sg_x9tFnOb1-JnRzLxFcUzwKSFSnP2eXZWTkpISE8VPyV5xSAQVpRScfPrQ4v6g-BzjGmPMFakOi9cJQIeuYRvMJoe08-EvmrmHR7TsTHI-wVPn-78biH6zzZkWLQJY17lk_r-mMbmnQX7vm5XL2-niB7qLrn1ACxOj-wfoytngdyYr09Zo3jbBBKjRxCRzVOw3ZhPhy3scFXe_prfns_Lyz8X8_OdlaZlQqbTNCtcCy2qFlZCScFXTVcVxo6QVwGkjaCUrJsa8UmPMKmHrFbfAqIVaYjBsVHwd-vo8sI7WJbCP1rct2KSJqrBiLEPfBqgL_nkLMem134Y2z6XpWAol5Zj01NlA5aViDNDoLuQbhBdNsO7N0NkMPdGU6N4MTXLFyVCxjsmHD5xKyiUjkr0BQOGGfw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gorooh, Vesta Afzali</creator><creator>Asanjan, Ata Akbari</creator><creator>Nguyen, Phu</creator><creator>Hsu, Kuolin</creator><creator>Sorooshian, Soroosh</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220401</creationdate><title>Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data</title><author>Gorooh, Vesta Afzali ; Asanjan, Ata Akbari ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cfb0d5078b09577149d2b840f97c5e42f5287835648960385cdb4ce32ced70ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brightness temperature</topic><topic>Cloud computing</topic><topic>Computer applications</topic><topic>Computing costs</topic><topic>Deep learning</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Estimates</topic><topic>Feature extraction</topic><topic>Geostationary satellites</topic><topic>Information processing</topic><topic>Information sources</topic><topic>Infrared imaging</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Meteorological satellites</topic><topic>Meteorology &amp; Atmospheric Sciences</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Precipitation intensity</topic><topic>Precipitation systems</topic><topic>Radar</topic><topic>Radiometers</topic><topic>Rainfall intensity</topic><topic>Real time</topic><topic>Resolution</topic><topic>Satellite observations</topic><topic>Sensors</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Synchronous satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorooh, Vesta Afzali</creatorcontrib><creatorcontrib>Asanjan, Ata Akbari</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorooh, Vesta Afzali</au><au>Asanjan, Ata Akbari</au><au>Nguyen, Phu</au><au>Hsu, Kuolin</au><au>Sorooshian, Soroosh</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><spage>597</spage><epage>617</epage><pages>597-617</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Recent developments in "headline-making" deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-21-0194.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2022-04, Vol.23 (4), p.597-617
issn 1525-755X
1525-7541
language eng
recordid cdi_osti_scitechconnect_1980933
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Brightness temperature
Cloud computing
Computer applications
Computing costs
Deep learning
ENVIRONMENTAL SCIENCES
Estimates
Feature extraction
Geostationary satellites
Information processing
Information sources
Infrared imaging
Kalman filters
Machine learning
Meteorological satellites
Meteorology & Atmospheric Sciences
Neural networks
Precipitation
Precipitation estimation
Precipitation intensity
Precipitation systems
Radar
Radiometers
Rainfall intensity
Real time
Resolution
Satellite observations
Sensors
Spatial discrimination
Spatial resolution
Synchronous satellites
title Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20High%20Spatiotemporal%20Resolution%20Precipitation%20Estimation%20(Deep-STEP)%20Using%20Passive%20Microwave%20and%20Infrared%20Data&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Gorooh,%20Vesta%20Afzali&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2022-04-01&rft.volume=23&rft.issue=4&rft.spage=597&rft.epage=617&rft.pages=597-617&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-21-0194.1&rft_dat=%3Cjstor_osti_%3E27247317%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675977613&rft_id=info:pmid/&rft_jstor_id=27247317&rfr_iscdi=true