Escaping the fate of Sisyphus: assessing resistome hybridization baits for antimicrobial resistance gene capture
Summary Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost‐effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial re...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2021-09, Vol.23 (12) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Environmental microbiology |
container_volume | 23 |
creator | Beaudry, Megan S. Thomas, Jesse C. Baptista, Rodrigo P. Sullivan, Amanda H. Norfolk, William Devault, Alison Enk, Jacob Kieran, Troy J. Rhodes, Olin E. Perry‐Dow, K. Allison Rose, Laura J. Bayona‐Vásquez, Natalia J. Oladeinde, Adelumola Lipp, Erin K. Sanchez, Susan Glenn, Travis C. |
description | Summary
Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost‐effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.1.2 and Pathogenicity Island Database (PAIDB)v2.0, targeting 3565 unique nucleotide sequences that confer resistance. We demonstrate the efficiency of our bait set on a custom‐made resistance mock community and complex environmental samples to increase the proportion of on‐target reads as much as >200‐fold. However, keeping pace with newly discovered ARGs poses a challenge when studying AMR, because novel ARGs are continually being identified and would not be included in bait sets designed prior to discovery. We provide imperative information on how our bait set performs against CARDv3.3.1, as well as a generalizable approach for deciding when and how to update hybridization capture bait sets. This research encapsulates the full life cycle of baits for hybridization capture of the resistome from design and validation (both
in silico
and
in vitro
) to utilization and forecasting updates and retirement. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1980609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980609</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19806093</originalsourceid><addsrcrecordid>eNqNjbsKwkAQAK9Q8PkPi33gEiUxtqLYay-bc8-s6F24XQv9ehXyAVZTzMAMzDhflUVW1HkxMhORm7V5tazs2HQ7cdhxuIK2BB6VIHo4sry69ikbQBES-flEwqLxQdC-msQXfqNyDNAgq4CPCTAoP9il2DDe-x6DI7hSIPhu9JloZoYe70LznlOz2O9O20MWRfksjpVc62II5PSc12tb2nr5V_QBY6NLeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Escaping the fate of Sisyphus: assessing resistome hybridization baits for antimicrobial resistance gene capture</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Beaudry, Megan S. ; Thomas, Jesse C. ; Baptista, Rodrigo P. ; Sullivan, Amanda H. ; Norfolk, William ; Devault, Alison ; Enk, Jacob ; Kieran, Troy J. ; Rhodes, Olin E. ; Perry‐Dow, K. Allison ; Rose, Laura J. ; Bayona‐Vásquez, Natalia J. ; Oladeinde, Adelumola ; Lipp, Erin K. ; Sanchez, Susan ; Glenn, Travis C.</creator><creatorcontrib>Beaudry, Megan S. ; Thomas, Jesse C. ; Baptista, Rodrigo P. ; Sullivan, Amanda H. ; Norfolk, William ; Devault, Alison ; Enk, Jacob ; Kieran, Troy J. ; Rhodes, Olin E. ; Perry‐Dow, K. Allison ; Rose, Laura J. ; Bayona‐Vásquez, Natalia J. ; Oladeinde, Adelumola ; Lipp, Erin K. ; Sanchez, Susan ; Glenn, Travis C. ; Univ. of Georgia, Athens, GA (United States)</creatorcontrib><description>Summary
Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost‐effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.1.2 and Pathogenicity Island Database (PAIDB)v2.0, targeting 3565 unique nucleotide sequences that confer resistance. We demonstrate the efficiency of our bait set on a custom‐made resistance mock community and complex environmental samples to increase the proportion of on‐target reads as much as >200‐fold. However, keeping pace with newly discovered ARGs poses a challenge when studying AMR, because novel ARGs are continually being identified and would not be included in bait sets designed prior to discovery. We provide imperative information on how our bait set performs against CARDv3.3.1, as well as a generalizable approach for deciding when and how to update hybridization capture bait sets. This research encapsulates the full life cycle of baits for hybridization capture of the resistome from design and validation (both
in silico
and
in vitro
) to utilization and forecasting updates and retirement.</description><identifier>ISSN: 1462-2912</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>BASIC BIOLOGICAL SCIENCES</subject><ispartof>Environmental microbiology, 2021-09, Vol.23 (12)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000257078648 ; 0000000237110727 ; 0000000218068260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1980609$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaudry, Megan S.</creatorcontrib><creatorcontrib>Thomas, Jesse C.</creatorcontrib><creatorcontrib>Baptista, Rodrigo P.</creatorcontrib><creatorcontrib>Sullivan, Amanda H.</creatorcontrib><creatorcontrib>Norfolk, William</creatorcontrib><creatorcontrib>Devault, Alison</creatorcontrib><creatorcontrib>Enk, Jacob</creatorcontrib><creatorcontrib>Kieran, Troy J.</creatorcontrib><creatorcontrib>Rhodes, Olin E.</creatorcontrib><creatorcontrib>Perry‐Dow, K. Allison</creatorcontrib><creatorcontrib>Rose, Laura J.</creatorcontrib><creatorcontrib>Bayona‐Vásquez, Natalia J.</creatorcontrib><creatorcontrib>Oladeinde, Adelumola</creatorcontrib><creatorcontrib>Lipp, Erin K.</creatorcontrib><creatorcontrib>Sanchez, Susan</creatorcontrib><creatorcontrib>Glenn, Travis C.</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><title>Escaping the fate of Sisyphus: assessing resistome hybridization baits for antimicrobial resistance gene capture</title><title>Environmental microbiology</title><description>Summary
Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost‐effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.1.2 and Pathogenicity Island Database (PAIDB)v2.0, targeting 3565 unique nucleotide sequences that confer resistance. We demonstrate the efficiency of our bait set on a custom‐made resistance mock community and complex environmental samples to increase the proportion of on‐target reads as much as >200‐fold. However, keeping pace with newly discovered ARGs poses a challenge when studying AMR, because novel ARGs are continually being identified and would not be included in bait sets designed prior to discovery. We provide imperative information on how our bait set performs against CARDv3.3.1, as well as a generalizable approach for deciding when and how to update hybridization capture bait sets. This research encapsulates the full life cycle of baits for hybridization capture of the resistome from design and validation (both
in silico
and
in vitro
) to utilization and forecasting updates and retirement.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><issn>1462-2912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjbsKwkAQAK9Q8PkPi33gEiUxtqLYay-bc8-s6F24XQv9ehXyAVZTzMAMzDhflUVW1HkxMhORm7V5tazs2HQ7cdhxuIK2BB6VIHo4sry69ikbQBES-flEwqLxQdC-msQXfqNyDNAgq4CPCTAoP9il2DDe-x6DI7hSIPhu9JloZoYe70LznlOz2O9O20MWRfksjpVc62II5PSc12tb2nr5V_QBY6NLeQ</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Beaudry, Megan S.</creator><creator>Thomas, Jesse C.</creator><creator>Baptista, Rodrigo P.</creator><creator>Sullivan, Amanda H.</creator><creator>Norfolk, William</creator><creator>Devault, Alison</creator><creator>Enk, Jacob</creator><creator>Kieran, Troy J.</creator><creator>Rhodes, Olin E.</creator><creator>Perry‐Dow, K. Allison</creator><creator>Rose, Laura J.</creator><creator>Bayona‐Vásquez, Natalia J.</creator><creator>Oladeinde, Adelumola</creator><creator>Lipp, Erin K.</creator><creator>Sanchez, Susan</creator><creator>Glenn, Travis C.</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000257078648</orcidid><orcidid>https://orcid.org/0000000237110727</orcidid><orcidid>https://orcid.org/0000000218068260</orcidid></search><sort><creationdate>20210914</creationdate><title>Escaping the fate of Sisyphus: assessing resistome hybridization baits for antimicrobial resistance gene capture</title><author>Beaudry, Megan S. ; Thomas, Jesse C. ; Baptista, Rodrigo P. ; Sullivan, Amanda H. ; Norfolk, William ; Devault, Alison ; Enk, Jacob ; Kieran, Troy J. ; Rhodes, Olin E. ; Perry‐Dow, K. Allison ; Rose, Laura J. ; Bayona‐Vásquez, Natalia J. ; Oladeinde, Adelumola ; Lipp, Erin K. ; Sanchez, Susan ; Glenn, Travis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19806093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaudry, Megan S.</creatorcontrib><creatorcontrib>Thomas, Jesse C.</creatorcontrib><creatorcontrib>Baptista, Rodrigo P.</creatorcontrib><creatorcontrib>Sullivan, Amanda H.</creatorcontrib><creatorcontrib>Norfolk, William</creatorcontrib><creatorcontrib>Devault, Alison</creatorcontrib><creatorcontrib>Enk, Jacob</creatorcontrib><creatorcontrib>Kieran, Troy J.</creatorcontrib><creatorcontrib>Rhodes, Olin E.</creatorcontrib><creatorcontrib>Perry‐Dow, K. Allison</creatorcontrib><creatorcontrib>Rose, Laura J.</creatorcontrib><creatorcontrib>Bayona‐Vásquez, Natalia J.</creatorcontrib><creatorcontrib>Oladeinde, Adelumola</creatorcontrib><creatorcontrib>Lipp, Erin K.</creatorcontrib><creatorcontrib>Sanchez, Susan</creatorcontrib><creatorcontrib>Glenn, Travis C.</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaudry, Megan S.</au><au>Thomas, Jesse C.</au><au>Baptista, Rodrigo P.</au><au>Sullivan, Amanda H.</au><au>Norfolk, William</au><au>Devault, Alison</au><au>Enk, Jacob</au><au>Kieran, Troy J.</au><au>Rhodes, Olin E.</au><au>Perry‐Dow, K. Allison</au><au>Rose, Laura J.</au><au>Bayona‐Vásquez, Natalia J.</au><au>Oladeinde, Adelumola</au><au>Lipp, Erin K.</au><au>Sanchez, Susan</au><au>Glenn, Travis C.</au><aucorp>Univ. of Georgia, Athens, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Escaping the fate of Sisyphus: assessing resistome hybridization baits for antimicrobial resistance gene capture</atitle><jtitle>Environmental microbiology</jtitle><date>2021-09-14</date><risdate>2021</risdate><volume>23</volume><issue>12</issue><issn>1462-2912</issn><abstract>Summary
Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost‐effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.1.2 and Pathogenicity Island Database (PAIDB)v2.0, targeting 3565 unique nucleotide sequences that confer resistance. We demonstrate the efficiency of our bait set on a custom‐made resistance mock community and complex environmental samples to increase the proportion of on‐target reads as much as >200‐fold. However, keeping pace with newly discovered ARGs poses a challenge when studying AMR, because novel ARGs are continually being identified and would not be included in bait sets designed prior to discovery. We provide imperative information on how our bait set performs against CARDv3.3.1, as well as a generalizable approach for deciding when and how to update hybridization capture bait sets. This research encapsulates the full life cycle of baits for hybridization capture of the resistome from design and validation (both
in silico
and
in vitro
) to utilization and forecasting updates and retirement.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000257078648</orcidid><orcidid>https://orcid.org/0000000237110727</orcidid><orcidid>https://orcid.org/0000000218068260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2021-09, Vol.23 (12) |
issn | 1462-2912 |
language | eng |
recordid | cdi_osti_scitechconnect_1980609 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | BASIC BIOLOGICAL SCIENCES |
title | Escaping the fate of Sisyphus: assessing resistome hybridization baits for antimicrobial resistance gene capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Escaping%20the%20fate%20of%20Sisyphus:%20assessing%20resistome%20hybridization%20baits%20for%20antimicrobial%20resistance%20gene%20capture&rft.jtitle=Environmental%20microbiology&rft.au=Beaudry,%20Megan%20S.&rft.aucorp=Univ.%20of%20Georgia,%20Athens,%20GA%20(United%20States)&rft.date=2021-09-14&rft.volume=23&rft.issue=12&rft.issn=1462-2912&rft_id=info:doi/&rft_dat=%3Costi%3E1980609%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |