Distributed Kuramoto Self-Synchronization of Vehicle Speed Trajectories in Traffic Networks

This article presents a distributed synchronization strategy for connected and automated vehicles in traffic networks. The strategy considers vehicles traveling from one intersection to the next as waves. The phase angle and frequency of each wave map to its position and velocity, respectively. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.6786-6796
Hauptverfasser: Rodriguez, Manuel, Fathy, Hosam K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6796
container_issue 7
container_start_page 6786
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Rodriguez, Manuel
Fathy, Hosam K.
description This article presents a distributed synchronization strategy for connected and automated vehicles in traffic networks. The strategy considers vehicles traveling from one intersection to the next as waves. The phase angle and frequency of each wave map to its position and velocity, respectively. The goal is to synchronize traffic such that intersecting traffic waves are out of phase at every intersection. This ensures the safe collective navigation of intersections. Vehicles share their phase angles through the V2X infrastructure, and synchronize these angles using the Kuramoto equation. This is a classical model for the self-synchronization of coupled oscillators. The mapping between phase and location for vehicles on different roads is designed such that Kuramoto synchronization ensures safe intersection navigation. Each vehicle uses a constrained optimal control policy to achieve its desired target Kuramoto phase at the upcoming intersection. The overall outcome is a distributed traffic synchronization algorithm that simultaneously tackles two challenges traditionally addressed independently, namely: coordinating crossing at an individual intersection, and harmonizing traffic flow between adjacent intersections. Simulation studies highlight the positive impact of this strategy on fuel consumption and traffic delay time, compared to a network with traditional traffic light timing.
doi_str_mv 10.1109/TITS.2021.3062178
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1980521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9370006</ieee_id><sourcerecordid>2688703555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-5b6366b81851e211f73182bb35959ce05797f37e01eb8b1e5e16a70b1cf7dba73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdR8PMHiJdFz1tnErPJHsVvLHpo9eIhbOKEptZNTVKk_np3qXiaD54ZXp6iOEYYIUJzPn2YTkYMGI441Ayl2ir2UAhVAWC9PfTsompAwG6xn9K8314IxL3i7dqnHL1ZZXovH1ex_Qw5lBNauGqy7uwshs7_tNmHrgyufKWZtwsqJ0vq8Wls52RziJ5S6bthds7b8onyd4gf6bDYce0i0dFfPShebm-mV_fV-Pnu4epyXFnOIFfC1LyujUIlkBiikxwVM4aLRjSWQMhGOi4JkIwySIKwbiUYtE6-m1byg-J08zek7HWyPpOd2dB1fTiNjQLBsIfONtAyhq8VpaznYRW7PpdmtVISuBCip3BD2RhSiuT0MvrPNq41gh5E60G0HkTrP9H9zcnmxhPRP99wCQA1_wXWBHlN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688703555</pqid></control><display><type>article</type><title>Distributed Kuramoto Self-Synchronization of Vehicle Speed Trajectories in Traffic Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Rodriguez, Manuel ; Fathy, Hosam K.</creator><creatorcontrib>Rodriguez, Manuel ; Fathy, Hosam K. ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>This article presents a distributed synchronization strategy for connected and automated vehicles in traffic networks. The strategy considers vehicles traveling from one intersection to the next as waves. The phase angle and frequency of each wave map to its position and velocity, respectively. The goal is to synchronize traffic such that intersecting traffic waves are out of phase at every intersection. This ensures the safe collective navigation of intersections. Vehicles share their phase angles through the V2X infrastructure, and synchronize these angles using the Kuramoto equation. This is a classical model for the self-synchronization of coupled oscillators. The mapping between phase and location for vehicles on different roads is designed such that Kuramoto synchronization ensures safe intersection navigation. Each vehicle uses a constrained optimal control policy to achieve its desired target Kuramoto phase at the upcoming intersection. The overall outcome is a distributed traffic synchronization algorithm that simultaneously tackles two challenges traditionally addressed independently, namely: coordinating crossing at an individual intersection, and harmonizing traffic flow between adjacent intersections. Simulation studies highlight the positive impact of this strategy on fuel consumption and traffic delay time, compared to a network with traditional traffic light timing.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3062178</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; connected and autonomous vehicles ; cooperative systems ; Couplings ; Delay time ; Engineering ; Fuels ; Intersection management ; Kuramoto equation ; Mathematical model ; Navigation ; Optimal control ; Oscillators ; Roads ; self-synchronization ; Synchronism ; Synchronization ; Traffic delay ; Traffic flow ; Traffic intersections ; Traffic signals ; Traffic speed ; Transportation ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.6786-6796</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-5b6366b81851e211f73182bb35959ce05797f37e01eb8b1e5e16a70b1cf7dba73</citedby><cites>FETCH-LOGICAL-c320t-5b6366b81851e211f73182bb35959ce05797f37e01eb8b1e5e16a70b1cf7dba73</cites><orcidid>0000-0003-4315-3616 ; 0000-0002-4714-2466 ; 0000000343153616 ; 0000000247142466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9370006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9370006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1980521$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez, Manuel</creatorcontrib><creatorcontrib>Fathy, Hosam K.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Distributed Kuramoto Self-Synchronization of Vehicle Speed Trajectories in Traffic Networks</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This article presents a distributed synchronization strategy for connected and automated vehicles in traffic networks. The strategy considers vehicles traveling from one intersection to the next as waves. The phase angle and frequency of each wave map to its position and velocity, respectively. The goal is to synchronize traffic such that intersecting traffic waves are out of phase at every intersection. This ensures the safe collective navigation of intersections. Vehicles share their phase angles through the V2X infrastructure, and synchronize these angles using the Kuramoto equation. This is a classical model for the self-synchronization of coupled oscillators. The mapping between phase and location for vehicles on different roads is designed such that Kuramoto synchronization ensures safe intersection navigation. Each vehicle uses a constrained optimal control policy to achieve its desired target Kuramoto phase at the upcoming intersection. The overall outcome is a distributed traffic synchronization algorithm that simultaneously tackles two challenges traditionally addressed independently, namely: coordinating crossing at an individual intersection, and harmonizing traffic flow between adjacent intersections. Simulation studies highlight the positive impact of this strategy on fuel consumption and traffic delay time, compared to a network with traditional traffic light timing.</description><subject>Algorithms</subject><subject>connected and autonomous vehicles</subject><subject>cooperative systems</subject><subject>Couplings</subject><subject>Delay time</subject><subject>Engineering</subject><subject>Fuels</subject><subject>Intersection management</subject><subject>Kuramoto equation</subject><subject>Mathematical model</subject><subject>Navigation</subject><subject>Optimal control</subject><subject>Oscillators</subject><subject>Roads</subject><subject>self-synchronization</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Traffic delay</subject><subject>Traffic flow</subject><subject>Traffic intersections</subject><subject>Traffic signals</subject><subject>Traffic speed</subject><subject>Transportation</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdR8PMHiJdFz1tnErPJHsVvLHpo9eIhbOKEptZNTVKk_np3qXiaD54ZXp6iOEYYIUJzPn2YTkYMGI441Ayl2ir2UAhVAWC9PfTsompAwG6xn9K8314IxL3i7dqnHL1ZZXovH1ex_Qw5lBNauGqy7uwshs7_tNmHrgyufKWZtwsqJ0vq8Wls52RziJ5S6bthds7b8onyd4gf6bDYce0i0dFfPShebm-mV_fV-Pnu4epyXFnOIFfC1LyujUIlkBiikxwVM4aLRjSWQMhGOi4JkIwySIKwbiUYtE6-m1byg-J08zek7HWyPpOd2dB1fTiNjQLBsIfONtAyhq8VpaznYRW7PpdmtVISuBCip3BD2RhSiuT0MvrPNq41gh5E60G0HkTrP9H9zcnmxhPRP99wCQA1_wXWBHlN</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Rodriguez, Manuel</creator><creator>Fathy, Hosam K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4315-3616</orcidid><orcidid>https://orcid.org/0000-0002-4714-2466</orcidid><orcidid>https://orcid.org/0000000343153616</orcidid><orcidid>https://orcid.org/0000000247142466</orcidid></search><sort><creationdate>20220701</creationdate><title>Distributed Kuramoto Self-Synchronization of Vehicle Speed Trajectories in Traffic Networks</title><author>Rodriguez, Manuel ; Fathy, Hosam K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-5b6366b81851e211f73182bb35959ce05797f37e01eb8b1e5e16a70b1cf7dba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>connected and autonomous vehicles</topic><topic>cooperative systems</topic><topic>Couplings</topic><topic>Delay time</topic><topic>Engineering</topic><topic>Fuels</topic><topic>Intersection management</topic><topic>Kuramoto equation</topic><topic>Mathematical model</topic><topic>Navigation</topic><topic>Optimal control</topic><topic>Oscillators</topic><topic>Roads</topic><topic>self-synchronization</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Traffic delay</topic><topic>Traffic flow</topic><topic>Traffic intersections</topic><topic>Traffic signals</topic><topic>Traffic speed</topic><topic>Transportation</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Manuel</creatorcontrib><creatorcontrib>Fathy, Hosam K.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodriguez, Manuel</au><au>Fathy, Hosam K.</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Kuramoto Self-Synchronization of Vehicle Speed Trajectories in Traffic Networks</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>6786</spage><epage>6796</epage><pages>6786-6796</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This article presents a distributed synchronization strategy for connected and automated vehicles in traffic networks. The strategy considers vehicles traveling from one intersection to the next as waves. The phase angle and frequency of each wave map to its position and velocity, respectively. The goal is to synchronize traffic such that intersecting traffic waves are out of phase at every intersection. This ensures the safe collective navigation of intersections. Vehicles share their phase angles through the V2X infrastructure, and synchronize these angles using the Kuramoto equation. This is a classical model for the self-synchronization of coupled oscillators. The mapping between phase and location for vehicles on different roads is designed such that Kuramoto synchronization ensures safe intersection navigation. Each vehicle uses a constrained optimal control policy to achieve its desired target Kuramoto phase at the upcoming intersection. The overall outcome is a distributed traffic synchronization algorithm that simultaneously tackles two challenges traditionally addressed independently, namely: coordinating crossing at an individual intersection, and harmonizing traffic flow between adjacent intersections. Simulation studies highlight the positive impact of this strategy on fuel consumption and traffic delay time, compared to a network with traditional traffic light timing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3062178</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4315-3616</orcidid><orcidid>https://orcid.org/0000-0002-4714-2466</orcidid><orcidid>https://orcid.org/0000000343153616</orcidid><orcidid>https://orcid.org/0000000247142466</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.6786-6796
issn 1524-9050
1558-0016
language eng
recordid cdi_osti_scitechconnect_1980521
source IEEE Electronic Library (IEL)
subjects Algorithms
connected and autonomous vehicles
cooperative systems
Couplings
Delay time
Engineering
Fuels
Intersection management
Kuramoto equation
Mathematical model
Navigation
Optimal control
Oscillators
Roads
self-synchronization
Synchronism
Synchronization
Traffic delay
Traffic flow
Traffic intersections
Traffic signals
Traffic speed
Transportation
Vehicle dynamics
Vehicles
title Distributed Kuramoto Self-Synchronization of Vehicle Speed Trajectories in Traffic Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Kuramoto%20Self-Synchronization%20of%20Vehicle%20Speed%20Trajectories%20in%20Traffic%20Networks&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Rodriguez,%20Manuel&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2022-07-01&rft.volume=23&rft.issue=7&rft.spage=6786&rft.epage=6796&rft.pages=6786-6796&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3062178&rft_dat=%3Cproquest_RIE%3E2688703555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688703555&rft_id=info:pmid/&rft_ieee_id=9370006&rfr_iscdi=true