Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models

Electrochemical mechanisms in lithium-ion batteries (LIBs) pose a significant challenge in deriving models that are highly accurate, have low computational complexity, and enable real-time state and parameter estimation. In this article, we propose a machine learning model as an important building b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2022-03, Vol.30 (2), p.680-695
Hauptverfasser: Li, Weihan, Limoge, Damas W., Zhang, Jiawei, Sauer, Dirk Uwe, Annaswamy, Anuradha M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 695
container_issue 2
container_start_page 680
container_title IEEE transactions on control systems technology
container_volume 30
creator Li, Weihan
Limoge, Damas W.
Zhang, Jiawei
Sauer, Dirk Uwe
Annaswamy, Anuradha M.
description Electrochemical mechanisms in lithium-ion batteries (LIBs) pose a significant challenge in deriving models that are highly accurate, have low computational complexity, and enable real-time state and parameter estimation. In this article, we propose a machine learning model as an important building block of a physics-based ANCF-e model that was recently proposed for LIBs. This machine learning model is used to estimate nonlinear potentials, including the open-circuit potential, electrolyte potential, and lithium-intercalation overpotential. Such an estimation is shown to result in a much smaller computational complexity and therefore can enable real-time state and parameter estimation. Three different machine learning architectures are explored, including multilayer perceptron, radial basis function (RBF)-based neural networks, and support vector machines. The training of these machine learning models is carried out using current profiles obtained with an electric vehicle model from driving cycles as inputs and ANCF-e model-based outputs. The underlying ANCF-e model is validated both through a high-fidelity numerical approach, including COMSOL and an experimental test using commercial LIBs. Both validations are carried out under both constant current discharging and dynamic load cycles. The resulting performance using these machine learning models is compared using different metrics, including estimation errors, convergence rates, training time, and computational time. The results indicate that an RBF-based neural network leads to better estimation of the underlying potentials in LIBs and that all machine learning models require a computational time that is 95% smaller than a physics-based approach for this estimation.
doi_str_mv 10.1109/TCST.2021.3071643
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1980472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9410398</ieee_id><sourcerecordid>2627837518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-254e222f72642f150f942b59486db0fcbdbf7c27314fbc969dc7ad76b0c871993</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFZ_gHhZ9Lw139kctVQtrFSwPYfdbGJT2qQm6cF_b-oWTzPMPO8wPEVxC8EEQiAel9PP5QQBBCcYcMgIPitGkNK6AjWj57kHDFeMYnZZXMW4AQASivioWMxisrs2We9Kb8oPn7RLtt3G0rqysWltD7tqnpfPbUo6WB3LVbTuq3xv1do6XTa6De5v4Hu9jdfFhclpfXOq42L1MltO36pm8TqfPjWVwgikClGiEUKGI0aQgRQYQVBHBalZ3wGjur4zXCGOITGdEkz0irc9Zx1QNYdC4HFxP9z1-X8ZlU1arZV3TqskoagB4ShDDwO0D_77oGOSG38ILv8lEUO8xpzCOlNwoFTwMQZt5D5kJeFHQiCPcuVRrjzKlSe5OXM3ZKzW-p8XBAIsavwLjQh0Wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627837518</pqid></control><display><type>article</type><title>Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Weihan ; Limoge, Damas W. ; Zhang, Jiawei ; Sauer, Dirk Uwe ; Annaswamy, Anuradha M.</creator><creatorcontrib>Li, Weihan ; Limoge, Damas W. ; Zhang, Jiawei ; Sauer, Dirk Uwe ; Annaswamy, Anuradha M. ; Washington State Univ., Pullman, WA (United States)</creatorcontrib><description>Electrochemical mechanisms in lithium-ion batteries (LIBs) pose a significant challenge in deriving models that are highly accurate, have low computational complexity, and enable real-time state and parameter estimation. In this article, we propose a machine learning model as an important building block of a physics-based ANCF-e model that was recently proposed for LIBs. This machine learning model is used to estimate nonlinear potentials, including the open-circuit potential, electrolyte potential, and lithium-intercalation overpotential. Such an estimation is shown to result in a much smaller computational complexity and therefore can enable real-time state and parameter estimation. Three different machine learning architectures are explored, including multilayer perceptron, radial basis function (RBF)-based neural networks, and support vector machines. The training of these machine learning models is carried out using current profiles obtained with an electric vehicle model from driving cycles as inputs and ANCF-e model-based outputs. The underlying ANCF-e model is validated both through a high-fidelity numerical approach, including COMSOL and an experimental test using commercial LIBs. Both validations are carried out under both constant current discharging and dynamic load cycles. The resulting performance using these machine learning models is compared using different metrics, including estimation errors, convergence rates, training time, and computational time. The results indicate that an RBF-based neural network leads to better estimation of the underlying potentials in LIBs and that all machine learning models require a computational time that is 95% smaller than a physics-based approach for this estimation.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2021.3071643</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation &amp; Control Systems ; Batteries ; Battery management ; Complexity ; Computational efficiency ; Computational modeling ; Computing time ; Dynamic loads ; Electric potential ; Electric vehicles ; electrochemical model ; Electrolytes ; Engineering ; Estimation ; Lithium ; Lithium-ion batteries ; lithium-ion batteries (LIBs) ; Machine learning ; Mathematical models ; Multilayer perceptrons ; Neural networks ; Open circuit voltage ; Parameter estimation ; Radial basis function ; Real time ; Rechargeable batteries ; Support vector machines ; Training</subject><ispartof>IEEE transactions on control systems technology, 2022-03, Vol.30 (2), p.680-695</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-254e222f72642f150f942b59486db0fcbdbf7c27314fbc969dc7ad76b0c871993</citedby><cites>FETCH-LOGICAL-c320t-254e222f72642f150f942b59486db0fcbdbf7c27314fbc969dc7ad76b0c871993</cites><orcidid>0000-0002-4354-0459 ; 0000-0002-2916-3968 ; 0000-0002-4909-4437 ; 0000-0002-5622-3591 ; 0000-0002-4963-0500 ; 0000000249630500 ; 0000000229163968 ; 0000000249094437 ; 0000000243540459 ; 0000000256223591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9410398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9410398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1980472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Weihan</creatorcontrib><creatorcontrib>Limoge, Damas W.</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Sauer, Dirk Uwe</creatorcontrib><creatorcontrib>Annaswamy, Anuradha M.</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States)</creatorcontrib><title>Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Electrochemical mechanisms in lithium-ion batteries (LIBs) pose a significant challenge in deriving models that are highly accurate, have low computational complexity, and enable real-time state and parameter estimation. In this article, we propose a machine learning model as an important building block of a physics-based ANCF-e model that was recently proposed for LIBs. This machine learning model is used to estimate nonlinear potentials, including the open-circuit potential, electrolyte potential, and lithium-intercalation overpotential. Such an estimation is shown to result in a much smaller computational complexity and therefore can enable real-time state and parameter estimation. Three different machine learning architectures are explored, including multilayer perceptron, radial basis function (RBF)-based neural networks, and support vector machines. The training of these machine learning models is carried out using current profiles obtained with an electric vehicle model from driving cycles as inputs and ANCF-e model-based outputs. The underlying ANCF-e model is validated both through a high-fidelity numerical approach, including COMSOL and an experimental test using commercial LIBs. Both validations are carried out under both constant current discharging and dynamic load cycles. The resulting performance using these machine learning models is compared using different metrics, including estimation errors, convergence rates, training time, and computational time. The results indicate that an RBF-based neural network leads to better estimation of the underlying potentials in LIBs and that all machine learning models require a computational time that is 95% smaller than a physics-based approach for this estimation.</description><subject>Automation &amp; Control Systems</subject><subject>Batteries</subject><subject>Battery management</subject><subject>Complexity</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computing time</subject><subject>Dynamic loads</subject><subject>Electric potential</subject><subject>Electric vehicles</subject><subject>electrochemical model</subject><subject>Electrolytes</subject><subject>Engineering</subject><subject>Estimation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>lithium-ion batteries (LIBs)</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Open circuit voltage</subject><subject>Parameter estimation</subject><subject>Radial basis function</subject><subject>Real time</subject><subject>Rechargeable batteries</subject><subject>Support vector machines</subject><subject>Training</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdRsFZ_gHhZ9Lw139kctVQtrFSwPYfdbGJT2qQm6cF_b-oWTzPMPO8wPEVxC8EEQiAel9PP5QQBBCcYcMgIPitGkNK6AjWj57kHDFeMYnZZXMW4AQASivioWMxisrs2We9Kb8oPn7RLtt3G0rqysWltD7tqnpfPbUo6WB3LVbTuq3xv1do6XTa6De5v4Hu9jdfFhclpfXOq42L1MltO36pm8TqfPjWVwgikClGiEUKGI0aQgRQYQVBHBalZ3wGjur4zXCGOITGdEkz0irc9Zx1QNYdC4HFxP9z1-X8ZlU1arZV3TqskoagB4ShDDwO0D_77oGOSG38ILv8lEUO8xpzCOlNwoFTwMQZt5D5kJeFHQiCPcuVRrjzKlSe5OXM3ZKzW-p8XBAIsavwLjQh0Wg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Li, Weihan</creator><creator>Limoge, Damas W.</creator><creator>Zhang, Jiawei</creator><creator>Sauer, Dirk Uwe</creator><creator>Annaswamy, Anuradha M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4354-0459</orcidid><orcidid>https://orcid.org/0000-0002-2916-3968</orcidid><orcidid>https://orcid.org/0000-0002-4909-4437</orcidid><orcidid>https://orcid.org/0000-0002-5622-3591</orcidid><orcidid>https://orcid.org/0000-0002-4963-0500</orcidid><orcidid>https://orcid.org/0000000249630500</orcidid><orcidid>https://orcid.org/0000000229163968</orcidid><orcidid>https://orcid.org/0000000249094437</orcidid><orcidid>https://orcid.org/0000000243540459</orcidid><orcidid>https://orcid.org/0000000256223591</orcidid></search><sort><creationdate>202203</creationdate><title>Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models</title><author>Li, Weihan ; Limoge, Damas W. ; Zhang, Jiawei ; Sauer, Dirk Uwe ; Annaswamy, Anuradha M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-254e222f72642f150f942b59486db0fcbdbf7c27314fbc969dc7ad76b0c871993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automation &amp; Control Systems</topic><topic>Batteries</topic><topic>Battery management</topic><topic>Complexity</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computing time</topic><topic>Dynamic loads</topic><topic>Electric potential</topic><topic>Electric vehicles</topic><topic>electrochemical model</topic><topic>Electrolytes</topic><topic>Engineering</topic><topic>Estimation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>lithium-ion batteries (LIBs)</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Open circuit voltage</topic><topic>Parameter estimation</topic><topic>Radial basis function</topic><topic>Real time</topic><topic>Rechargeable batteries</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weihan</creatorcontrib><creatorcontrib>Limoge, Damas W.</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Sauer, Dirk Uwe</creatorcontrib><creatorcontrib>Annaswamy, Anuradha M.</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Weihan</au><au>Limoge, Damas W.</au><au>Zhang, Jiawei</au><au>Sauer, Dirk Uwe</au><au>Annaswamy, Anuradha M.</au><aucorp>Washington State Univ., Pullman, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2022-03</date><risdate>2022</risdate><volume>30</volume><issue>2</issue><spage>680</spage><epage>695</epage><pages>680-695</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Electrochemical mechanisms in lithium-ion batteries (LIBs) pose a significant challenge in deriving models that are highly accurate, have low computational complexity, and enable real-time state and parameter estimation. In this article, we propose a machine learning model as an important building block of a physics-based ANCF-e model that was recently proposed for LIBs. This machine learning model is used to estimate nonlinear potentials, including the open-circuit potential, electrolyte potential, and lithium-intercalation overpotential. Such an estimation is shown to result in a much smaller computational complexity and therefore can enable real-time state and parameter estimation. Three different machine learning architectures are explored, including multilayer perceptron, radial basis function (RBF)-based neural networks, and support vector machines. The training of these machine learning models is carried out using current profiles obtained with an electric vehicle model from driving cycles as inputs and ANCF-e model-based outputs. The underlying ANCF-e model is validated both through a high-fidelity numerical approach, including COMSOL and an experimental test using commercial LIBs. Both validations are carried out under both constant current discharging and dynamic load cycles. The resulting performance using these machine learning models is compared using different metrics, including estimation errors, convergence rates, training time, and computational time. The results indicate that an RBF-based neural network leads to better estimation of the underlying potentials in LIBs and that all machine learning models require a computational time that is 95% smaller than a physics-based approach for this estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2021.3071643</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4354-0459</orcidid><orcidid>https://orcid.org/0000-0002-2916-3968</orcidid><orcidid>https://orcid.org/0000-0002-4909-4437</orcidid><orcidid>https://orcid.org/0000-0002-5622-3591</orcidid><orcidid>https://orcid.org/0000-0002-4963-0500</orcidid><orcidid>https://orcid.org/0000000249630500</orcidid><orcidid>https://orcid.org/0000000229163968</orcidid><orcidid>https://orcid.org/0000000249094437</orcidid><orcidid>https://orcid.org/0000000243540459</orcidid><orcidid>https://orcid.org/0000000256223591</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2022-03, Vol.30 (2), p.680-695
issn 1063-6536
1558-0865
language eng
recordid cdi_osti_scitechconnect_1980472
source IEEE Electronic Library (IEL)
subjects Automation & Control Systems
Batteries
Battery management
Complexity
Computational efficiency
Computational modeling
Computing time
Dynamic loads
Electric potential
Electric vehicles
electrochemical model
Electrolytes
Engineering
Estimation
Lithium
Lithium-ion batteries
lithium-ion batteries (LIBs)
Machine learning
Mathematical models
Multilayer perceptrons
Neural networks
Open circuit voltage
Parameter estimation
Radial basis function
Real time
Rechargeable batteries
Support vector machines
Training
title Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Potentials%20in%20Lithium-Ion%20Batteries%20Using%20Machine%20Learning%20Models&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Li,%20Weihan&rft.aucorp=Washington%20State%20Univ.,%20Pullman,%20WA%20(United%20States)&rft.date=2022-03&rft.volume=30&rft.issue=2&rft.spage=680&rft.epage=695&rft.pages=680-695&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2021.3071643&rft_dat=%3Cproquest_RIE%3E2627837518%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627837518&rft_id=info:pmid/&rft_ieee_id=9410398&rfr_iscdi=true