Use of the Rotating Rectifier Board as a Capacitive Power Coupler for Brushless Wound Field Synchronous Machines
Wound field synchronous machines (WFSMs) are an attractive alternative to permanent magnet synchronous machines (PMSMs) given their competitive power/torque density and direct field excitation control for easy weakening. Here, a design process is presented for a low-cost and contactless capacitive p...
Gespeichert in:
Veröffentlicht in: | IEEE journal of emerging and selected topics in power electronics 2022-02, Vol.10 (1), p.170-183 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 1 |
container_start_page | 170 |
container_title | IEEE journal of emerging and selected topics in power electronics |
container_volume | 10 |
creator | Hagen, Skyler Tisler, Marisa Dai, Jiejian Brown, Ian P. Ludois, Daniel C. |
description | Wound field synchronous machines (WFSMs) are an attractive alternative to permanent magnet synchronous machines (PMSMs) given their competitive power/torque density and direct field excitation control for easy weakening. Here, a design process is presented for a low-cost and contactless capacitive power coupler (CPC) for WFSM rotor winding excitation using only simple printed circuit boards (PCBs). These PCBs are an extension of the machine's rotating rectifier. Experimental verification of the design shows 675-W power transfer at 90.3% efficiency to the rotor field of a 30/55 kW (continuous/peak) WFSM operating as a generator. A GaN inverter switching at 2 MHz reduces passive component sizes and keeps CPC voltages within safe limits. Parasitic loss minimization design rules for trace layout in the CPC PCB structure are established for high-frequency operation along with a partial capacitance approach for the coupling matrix. Tank inductor loss was reduced by using a cored design, while a buck converter integrated into the rotating rectifier matches the load impedance of the rotor to the CPC system, reducing the complexity of the tank compensation circuit. Finally, the CPC as a platform for position self-sensing is introduced conceptually using two methods. First, a phase-locked loop (PLL) tracks the resonant tank frequency of the CPC, whose saliency is spatially tied to the rotation of the machine. Second, the rotating buck converter effectively injects high-frequency content into the field that can be tracked by the stator drive controls. |
doi_str_mv | 10.1109/JESTPE.2020.3039497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1980400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9265209</ieee_id><sourcerecordid>2624754281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-2215d22a5121012171b3a666d01328dd0eba57670c05c64a4d613c453b80ca513</originalsourceid><addsrcrecordid>eNo9UV1LwzAULaLg0P2CvQR93rxJmqR91LH5wUSZDh9DlqY2ozY1aZX9ezM6vHC5F-45h3M5STLBMMMY8punxdv762JGgMCMAs3TXJwkI4J5NuUiY6f_uxDnyTiEHcTKCMtFNkraTTDIlairDFq7TnW2-URroztbWuPRnVO-QCogheaqVdp29segV_cbb3PXt3WcpYs434eqNiGgD9c3BVpaUxfobd_oyrvG9QE9K13ZxoTL5KxUdTDj47xINsvF-_xhunq5f5zfrqY6paybEoJZQYhimGCILfCWKs55AZiSrCjAbBUTXIAGpnmq0oJjqlNGtxnoyKIXydWg60JnZYjOja60a5r4m8R5BilABF0PoNa7796ETu5c75voSxJOUsFSkh2k6IDS3oXgTSlbb7-U30sM8hCBHCKQhwjkMYLImgwsa4z5Z-SEMwI5_QPnJoDa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624754281</pqid></control><display><type>article</type><title>Use of the Rotating Rectifier Board as a Capacitive Power Coupler for Brushless Wound Field Synchronous Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Hagen, Skyler ; Tisler, Marisa ; Dai, Jiejian ; Brown, Ian P. ; Ludois, Daniel C.</creator><creatorcontrib>Hagen, Skyler ; Tisler, Marisa ; Dai, Jiejian ; Brown, Ian P. ; Ludois, Daniel C. ; Illinois Institute of Technology, Chicago, IL (United States)</creatorcontrib><description>Wound field synchronous machines (WFSMs) are an attractive alternative to permanent magnet synchronous machines (PMSMs) given their competitive power/torque density and direct field excitation control for easy weakening. Here, a design process is presented for a low-cost and contactless capacitive power coupler (CPC) for WFSM rotor winding excitation using only simple printed circuit boards (PCBs). These PCBs are an extension of the machine's rotating rectifier. Experimental verification of the design shows 675-W power transfer at 90.3% efficiency to the rotor field of a 30/55 kW (continuous/peak) WFSM operating as a generator. A GaN inverter switching at 2 MHz reduces passive component sizes and keeps CPC voltages within safe limits. Parasitic loss minimization design rules for trace layout in the CPC PCB structure are established for high-frequency operation along with a partial capacitance approach for the coupling matrix. Tank inductor loss was reduced by using a cored design, while a buck converter integrated into the rotating rectifier matches the load impedance of the rotor to the CPC system, reducing the complexity of the tank compensation circuit. Finally, the CPC as a platform for position self-sensing is introduced conceptually using two methods. First, a phase-locked loop (PLL) tracks the resonant tank frequency of the CPC, whose saliency is spatially tied to the rotation of the machine. Second, the rotating buck converter effectively injects high-frequency content into the field that can be tracked by the stator drive controls.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2020.3039497</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Buck converters ; Capacitive power transfer ; capacitors ; Circuit boards ; Couplers ; Couplings ; electric machines ; Electrodes ; Engineering ; Excitation ; generator ; Passive components ; Permanent magnets ; Phase locked loops ; Position sensing ; Power transfer ; Printed circuits ; Rectifiers ; resonant inverters ; Rotating machinery ; Rotation ; Rotors ; sensorless ; Stator windings ; Synchronous machines ; Windings</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2022-02, Vol.10 (1), p.170-183</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-2215d22a5121012171b3a666d01328dd0eba57670c05c64a4d613c453b80ca513</citedby><cites>FETCH-LOGICAL-c435t-2215d22a5121012171b3a666d01328dd0eba57670c05c64a4d613c453b80ca513</cites><orcidid>0000-0002-6674-5772 ; 0000-0001-6566-7293 ; 0000-0002-8886-9493 ; 0000000288869493 ; 0000000266745772 ; 0000000165667293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9265209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9265209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1980400$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagen, Skyler</creatorcontrib><creatorcontrib>Tisler, Marisa</creatorcontrib><creatorcontrib>Dai, Jiejian</creatorcontrib><creatorcontrib>Brown, Ian P.</creatorcontrib><creatorcontrib>Ludois, Daniel C.</creatorcontrib><creatorcontrib>Illinois Institute of Technology, Chicago, IL (United States)</creatorcontrib><title>Use of the Rotating Rectifier Board as a Capacitive Power Coupler for Brushless Wound Field Synchronous Machines</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>Wound field synchronous machines (WFSMs) are an attractive alternative to permanent magnet synchronous machines (PMSMs) given their competitive power/torque density and direct field excitation control for easy weakening. Here, a design process is presented for a low-cost and contactless capacitive power coupler (CPC) for WFSM rotor winding excitation using only simple printed circuit boards (PCBs). These PCBs are an extension of the machine's rotating rectifier. Experimental verification of the design shows 675-W power transfer at 90.3% efficiency to the rotor field of a 30/55 kW (continuous/peak) WFSM operating as a generator. A GaN inverter switching at 2 MHz reduces passive component sizes and keeps CPC voltages within safe limits. Parasitic loss minimization design rules for trace layout in the CPC PCB structure are established for high-frequency operation along with a partial capacitance approach for the coupling matrix. Tank inductor loss was reduced by using a cored design, while a buck converter integrated into the rotating rectifier matches the load impedance of the rotor to the CPC system, reducing the complexity of the tank compensation circuit. Finally, the CPC as a platform for position self-sensing is introduced conceptually using two methods. First, a phase-locked loop (PLL) tracks the resonant tank frequency of the CPC, whose saliency is spatially tied to the rotation of the machine. Second, the rotating buck converter effectively injects high-frequency content into the field that can be tracked by the stator drive controls.</description><subject>Buck converters</subject><subject>Capacitive power transfer</subject><subject>capacitors</subject><subject>Circuit boards</subject><subject>Couplers</subject><subject>Couplings</subject><subject>electric machines</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Excitation</subject><subject>generator</subject><subject>Passive components</subject><subject>Permanent magnets</subject><subject>Phase locked loops</subject><subject>Position sensing</subject><subject>Power transfer</subject><subject>Printed circuits</subject><subject>Rectifiers</subject><subject>resonant inverters</subject><subject>Rotating machinery</subject><subject>Rotation</subject><subject>Rotors</subject><subject>sensorless</subject><subject>Stator windings</subject><subject>Synchronous machines</subject><subject>Windings</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UV1LwzAULaLg0P2CvQR93rxJmqR91LH5wUSZDh9DlqY2ozY1aZX9ezM6vHC5F-45h3M5STLBMMMY8punxdv762JGgMCMAs3TXJwkI4J5NuUiY6f_uxDnyTiEHcTKCMtFNkraTTDIlairDFq7TnW2-URroztbWuPRnVO-QCogheaqVdp29segV_cbb3PXt3WcpYs434eqNiGgD9c3BVpaUxfobd_oyrvG9QE9K13ZxoTL5KxUdTDj47xINsvF-_xhunq5f5zfrqY6paybEoJZQYhimGCILfCWKs55AZiSrCjAbBUTXIAGpnmq0oJjqlNGtxnoyKIXydWg60JnZYjOja60a5r4m8R5BilABF0PoNa7796ETu5c75voSxJOUsFSkh2k6IDS3oXgTSlbb7-U30sM8hCBHCKQhwjkMYLImgwsa4z5Z-SEMwI5_QPnJoDa</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hagen, Skyler</creator><creator>Tisler, Marisa</creator><creator>Dai, Jiejian</creator><creator>Brown, Ian P.</creator><creator>Ludois, Daniel C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6674-5772</orcidid><orcidid>https://orcid.org/0000-0001-6566-7293</orcidid><orcidid>https://orcid.org/0000-0002-8886-9493</orcidid><orcidid>https://orcid.org/0000000288869493</orcidid><orcidid>https://orcid.org/0000000266745772</orcidid><orcidid>https://orcid.org/0000000165667293</orcidid></search><sort><creationdate>20220201</creationdate><title>Use of the Rotating Rectifier Board as a Capacitive Power Coupler for Brushless Wound Field Synchronous Machines</title><author>Hagen, Skyler ; Tisler, Marisa ; Dai, Jiejian ; Brown, Ian P. ; Ludois, Daniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-2215d22a5121012171b3a666d01328dd0eba57670c05c64a4d613c453b80ca513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Buck converters</topic><topic>Capacitive power transfer</topic><topic>capacitors</topic><topic>Circuit boards</topic><topic>Couplers</topic><topic>Couplings</topic><topic>electric machines</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Excitation</topic><topic>generator</topic><topic>Passive components</topic><topic>Permanent magnets</topic><topic>Phase locked loops</topic><topic>Position sensing</topic><topic>Power transfer</topic><topic>Printed circuits</topic><topic>Rectifiers</topic><topic>resonant inverters</topic><topic>Rotating machinery</topic><topic>Rotation</topic><topic>Rotors</topic><topic>sensorless</topic><topic>Stator windings</topic><topic>Synchronous machines</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagen, Skyler</creatorcontrib><creatorcontrib>Tisler, Marisa</creatorcontrib><creatorcontrib>Dai, Jiejian</creatorcontrib><creatorcontrib>Brown, Ian P.</creatorcontrib><creatorcontrib>Ludois, Daniel C.</creatorcontrib><creatorcontrib>Illinois Institute of Technology, Chicago, IL (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagen, Skyler</au><au>Tisler, Marisa</au><au>Dai, Jiejian</au><au>Brown, Ian P.</au><au>Ludois, Daniel C.</au><aucorp>Illinois Institute of Technology, Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the Rotating Rectifier Board as a Capacitive Power Coupler for Brushless Wound Field Synchronous Machines</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>170</spage><epage>183</epage><pages>170-183</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>Wound field synchronous machines (WFSMs) are an attractive alternative to permanent magnet synchronous machines (PMSMs) given their competitive power/torque density and direct field excitation control for easy weakening. Here, a design process is presented for a low-cost and contactless capacitive power coupler (CPC) for WFSM rotor winding excitation using only simple printed circuit boards (PCBs). These PCBs are an extension of the machine's rotating rectifier. Experimental verification of the design shows 675-W power transfer at 90.3% efficiency to the rotor field of a 30/55 kW (continuous/peak) WFSM operating as a generator. A GaN inverter switching at 2 MHz reduces passive component sizes and keeps CPC voltages within safe limits. Parasitic loss minimization design rules for trace layout in the CPC PCB structure are established for high-frequency operation along with a partial capacitance approach for the coupling matrix. Tank inductor loss was reduced by using a cored design, while a buck converter integrated into the rotating rectifier matches the load impedance of the rotor to the CPC system, reducing the complexity of the tank compensation circuit. Finally, the CPC as a platform for position self-sensing is introduced conceptually using two methods. First, a phase-locked loop (PLL) tracks the resonant tank frequency of the CPC, whose saliency is spatially tied to the rotation of the machine. Second, the rotating buck converter effectively injects high-frequency content into the field that can be tracked by the stator drive controls.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2020.3039497</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6674-5772</orcidid><orcidid>https://orcid.org/0000-0001-6566-7293</orcidid><orcidid>https://orcid.org/0000-0002-8886-9493</orcidid><orcidid>https://orcid.org/0000000288869493</orcidid><orcidid>https://orcid.org/0000000266745772</orcidid><orcidid>https://orcid.org/0000000165667293</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6777 |
ispartof | IEEE journal of emerging and selected topics in power electronics, 2022-02, Vol.10 (1), p.170-183 |
issn | 2168-6777 2168-6785 |
language | eng |
recordid | cdi_osti_scitechconnect_1980400 |
source | IEEE Electronic Library (IEL) |
subjects | Buck converters Capacitive power transfer capacitors Circuit boards Couplers Couplings electric machines Electrodes Engineering Excitation generator Passive components Permanent magnets Phase locked loops Position sensing Power transfer Printed circuits Rectifiers resonant inverters Rotating machinery Rotation Rotors sensorless Stator windings Synchronous machines Windings |
title | Use of the Rotating Rectifier Board as a Capacitive Power Coupler for Brushless Wound Field Synchronous Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20Rotating%20Rectifier%20Board%20as%20a%20Capacitive%20Power%20Coupler%20for%20Brushless%20Wound%20Field%20Synchronous%20Machines&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Hagen,%20Skyler&rft.aucorp=Illinois%20Institute%20of%20Technology,%20Chicago,%20IL%20(United%20States)&rft.date=2022-02-01&rft.volume=10&rft.issue=1&rft.spage=170&rft.epage=183&rft.pages=170-183&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2020.3039497&rft_dat=%3Cproquest_RIE%3E2624754281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624754281&rft_id=info:pmid/&rft_ieee_id=9265209&rfr_iscdi=true |