Criticality and Phase Classification for Quadratic Open Quantum Many-Body Systems
Here we study the steady states of translation-invariant open quantum many-body systems governed by Lindblad master equations, where the Hamiltonian is quadratic in the ladder operators, and the Lindblad operators are either linear or quadratic and Hermitian. These systems are called quasifree and q...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2022-09, Vol.129 (12) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physical review letters |
container_volume | 129 |
creator | Zhang, Yikang Barthel, Thomas |
description | Here we study the steady states of translation-invariant open quantum many-body systems governed by Lindblad master equations, where the Hamiltonian is quadratic in the ladder operators, and the Lindblad operators are either linear or quadratic and Hermitian. These systems are called quasifree and quadratic, respectively. We find that steady states of one-dimensional systems with finite-range interactions necessarily have exponentially decaying Green’s functions. For the quasifree case without quadratic Lindblad operators, we show that fermionic systems with finite-range interactions are noncritical for any number of spatial dimensions and provide bounds on the correlation lengths. Quasifree bosonic systems can be critical in D > 1 dimensions. Last, we address the question of phase transitions in quadratic systems and find that, without symmetry constraints beyond invariance under single-particle basis and particle-hole transformations, all gapped Liouvillians belong to the same phase. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1980320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980320</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19803203</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMoWD93CO4DL63YdmtR3IgW3ZeQpjTSJtL3usjtreABXA3DzIxFEtJcpFLu5ywCSKTIAdIlWyG-AEDGhyxiZTFYslp1lgJXrub3VqHhRacQbTMFst7xxg-8HFU9TKr57W3cVx2NPb8qF8TR14E_ApLpccMWjerQbH9cs9359CwuwiPZCrUlo1vtnTOaKplnkMSQ_DV9ACT9QGY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Criticality and Phase Classification for Quadratic Open Quantum Many-Body Systems</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Yikang ; Barthel, Thomas</creator><creatorcontrib>Zhang, Yikang ; Barthel, Thomas ; Duke Univ., Durham, NC (United States)</creatorcontrib><description>Here we study the steady states of translation-invariant open quantum many-body systems governed by Lindblad master equations, where the Hamiltonian is quadratic in the ladder operators, and the Lindblad operators are either linear or quadratic and Hermitian. These systems are called quasifree and quadratic, respectively. We find that steady states of one-dimensional systems with finite-range interactions necessarily have exponentially decaying Green’s functions. For the quasifree case without quadratic Lindblad operators, we show that fermionic systems with finite-range interactions are noncritical for any number of spatial dimensions and provide bounds on the correlation lengths. Quasifree bosonic systems can be critical in D > 1 dimensions. Last, we address the question of phase transitions in quadratic systems and find that, without symmetry constraints beyond invariance under single-particle basis and particle-hole transformations, all gapped Liouvillians belong to the same phase.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Collective effects in quantum optics ; Open quantum systems ; Open quantum systems & decoherence ; Physics ; Quantum computation ; Quantum control ; Quantum criticality ; Quantum phase transitions ; Quantum simulation</subject><ispartof>Physical review letters, 2022-09, Vol.129 (12)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000181854662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1980320$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yikang</creatorcontrib><creatorcontrib>Barthel, Thomas</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><title>Criticality and Phase Classification for Quadratic Open Quantum Many-Body Systems</title><title>Physical review letters</title><description>Here we study the steady states of translation-invariant open quantum many-body systems governed by Lindblad master equations, where the Hamiltonian is quadratic in the ladder operators, and the Lindblad operators are either linear or quadratic and Hermitian. These systems are called quasifree and quadratic, respectively. We find that steady states of one-dimensional systems with finite-range interactions necessarily have exponentially decaying Green’s functions. For the quasifree case without quadratic Lindblad operators, we show that fermionic systems with finite-range interactions are noncritical for any number of spatial dimensions and provide bounds on the correlation lengths. Quasifree bosonic systems can be critical in D > 1 dimensions. Last, we address the question of phase transitions in quadratic systems and find that, without symmetry constraints beyond invariance under single-particle basis and particle-hole transformations, all gapped Liouvillians belong to the same phase.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Collective effects in quantum optics</subject><subject>Open quantum systems</subject><subject>Open quantum systems & decoherence</subject><subject>Physics</subject><subject>Quantum computation</subject><subject>Quantum control</subject><subject>Quantum criticality</subject><subject>Quantum phase transitions</subject><subject>Quantum simulation</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAUAIMoWD93CO4DL63YdmtR3IgW3ZeQpjTSJtL3usjtreABXA3DzIxFEtJcpFLu5ywCSKTIAdIlWyG-AEDGhyxiZTFYslp1lgJXrub3VqHhRacQbTMFst7xxg-8HFU9TKr57W3cVx2NPb8qF8TR14E_ApLpccMWjerQbH9cs9359CwuwiPZCrUlo1vtnTOaKplnkMSQ_DV9ACT9QGY</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Zhang, Yikang</creator><creator>Barthel, Thomas</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000181854662</orcidid></search><sort><creationdate>20220912</creationdate><title>Criticality and Phase Classification for Quadratic Open Quantum Many-Body Systems</title><author>Zhang, Yikang ; Barthel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19803203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Collective effects in quantum optics</topic><topic>Open quantum systems</topic><topic>Open quantum systems & decoherence</topic><topic>Physics</topic><topic>Quantum computation</topic><topic>Quantum control</topic><topic>Quantum criticality</topic><topic>Quantum phase transitions</topic><topic>Quantum simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yikang</creatorcontrib><creatorcontrib>Barthel, Thomas</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yikang</au><au>Barthel, Thomas</au><aucorp>Duke Univ., Durham, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Criticality and Phase Classification for Quadratic Open Quantum Many-Body Systems</atitle><jtitle>Physical review letters</jtitle><date>2022-09-12</date><risdate>2022</risdate><volume>129</volume><issue>12</issue><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Here we study the steady states of translation-invariant open quantum many-body systems governed by Lindblad master equations, where the Hamiltonian is quadratic in the ladder operators, and the Lindblad operators are either linear or quadratic and Hermitian. These systems are called quasifree and quadratic, respectively. We find that steady states of one-dimensional systems with finite-range interactions necessarily have exponentially decaying Green’s functions. For the quasifree case without quadratic Lindblad operators, we show that fermionic systems with finite-range interactions are noncritical for any number of spatial dimensions and provide bounds on the correlation lengths. Quasifree bosonic systems can be critical in D > 1 dimensions. Last, we address the question of phase transitions in quadratic systems and find that, without symmetry constraints beyond invariance under single-particle basis and particle-hole transformations, all gapped Liouvillians belong to the same phase.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><orcidid>https://orcid.org/0000000181854662</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2022-09, Vol.129 (12) |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1980320 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Collective effects in quantum optics Open quantum systems Open quantum systems & decoherence Physics Quantum computation Quantum control Quantum criticality Quantum phase transitions Quantum simulation |
title | Criticality and Phase Classification for Quadratic Open Quantum Many-Body Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Criticality%20and%20Phase%20Classification%20for%20Quadratic%20Open%20Quantum%20Many-Body%20Systems&rft.jtitle=Physical%20review%20letters&rft.au=Zhang,%20Yikang&rft.aucorp=Duke%20Univ.,%20Durham,%20NC%20(United%20States)&rft.date=2022-09-12&rft.volume=129&rft.issue=12&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/&rft_dat=%3Costi%3E1980320%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |