Perturbative Quantum Monte Carlo Method for Nuclear Physics
While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. Here we demonstrate the method by computing...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2022-06, Vol.128 (24), p.242501-242501, Article 242501 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242501 |
---|---|
container_issue | 24 |
container_start_page | 242501 |
container_title | Physical review letters |
container_volume | 128 |
creator | Lu, Bing-Nan Li, Ning Elhatisari, Serdar Ma, Yuan-Zhuo Lee, Dean Meißner, Ulf-G. |
description | While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. Here we demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to 16O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second-order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry. |
doi_str_mv | 10.1103/PhysRevLett.128.242501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1980294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684099088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-b908a49f585d136687d3d2fe204eee98389ca091c44af7223f28cb2161b4503b3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEuXxCyhixSZlxnYSW2KDKl5SeQrWluNO1KA0BttB6t_wLXwZqcqC1WyO5t57GDtBmCKCOH9aruMLfc0ppSlyNeWSF4A7bIJQ6bxClLtsAiAw1wDVPjuI8R0AkJdqwi6eKKQh1Da1X5Q9D7ZPwyq7932in--ZDZ3P7ikt_SJrfMgeBteRDdkmsnXxiO01tot0_HcP2dv11evsNp8_3tzNLue5E1ikvNagrNRNoYoFirJU1UIseEMcJBFpJZR2FjQ6KW1TcS4arlzNscRaFiBqcchOt399TK2Jrk3kls73PblkUCvgWo7Q2Rb6CP5zoJjMqo2Ous725IdoxrkS9FhFjWi5RV3wMQZqzEdoVzasDYLZODX_nJrRqdk6Fb9ZrWzW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684099088</pqid></control><display><type>article</type><title>Perturbative Quantum Monte Carlo Method for Nuclear Physics</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lu, Bing-Nan ; Li, Ning ; Elhatisari, Serdar ; Ma, Yuan-Zhuo ; Lee, Dean ; Meißner, Ulf-G.</creator><creatorcontrib>Lu, Bing-Nan ; Li, Ning ; Elhatisari, Serdar ; Ma, Yuan-Zhuo ; Lee, Dean ; Meißner, Ulf-G. ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. Here we demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to 16O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second-order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.128.242501</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Monte Carlo methods ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Physics</subject><ispartof>Physical review letters, 2022-06, Vol.128 (24), p.242501-242501, Article 242501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-b908a49f585d136687d3d2fe204eee98389ca091c44af7223f28cb2161b4503b3</citedby><cites>FETCH-LOGICAL-c315t-b908a49f585d136687d3d2fe204eee98389ca091c44af7223f28cb2161b4503b3</cites><orcidid>0000-0001-7890-4948 ; 0000-0002-7951-1991 ; 0000-0003-1254-442X ; 0000-0002-0892-4457 ; 000000031254442X ; 0000000208924457 ; 0000000279511991 ; 0000000178904948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1980294$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Bing-Nan</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Elhatisari, Serdar</creatorcontrib><creatorcontrib>Ma, Yuan-Zhuo</creatorcontrib><creatorcontrib>Lee, Dean</creatorcontrib><creatorcontrib>Meißner, Ulf-G.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Perturbative Quantum Monte Carlo Method for Nuclear Physics</title><title>Physical review letters</title><description>While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. Here we demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to 16O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second-order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry.</description><subject>Monte Carlo methods</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEuXxCyhixSZlxnYSW2KDKl5SeQrWluNO1KA0BttB6t_wLXwZqcqC1WyO5t57GDtBmCKCOH9aruMLfc0ppSlyNeWSF4A7bIJQ6bxClLtsAiAw1wDVPjuI8R0AkJdqwi6eKKQh1Da1X5Q9D7ZPwyq7932in--ZDZ3P7ikt_SJrfMgeBteRDdkmsnXxiO01tot0_HcP2dv11evsNp8_3tzNLue5E1ikvNagrNRNoYoFirJU1UIseEMcJBFpJZR2FjQ6KW1TcS4arlzNscRaFiBqcchOt399TK2Jrk3kls73PblkUCvgWo7Q2Rb6CP5zoJjMqo2Ous725IdoxrkS9FhFjWi5RV3wMQZqzEdoVzasDYLZODX_nJrRqdk6Fb9ZrWzW</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Lu, Bing-Nan</creator><creator>Li, Ning</creator><creator>Elhatisari, Serdar</creator><creator>Ma, Yuan-Zhuo</creator><creator>Lee, Dean</creator><creator>Meißner, Ulf-G.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7890-4948</orcidid><orcidid>https://orcid.org/0000-0002-7951-1991</orcidid><orcidid>https://orcid.org/0000-0003-1254-442X</orcidid><orcidid>https://orcid.org/0000-0002-0892-4457</orcidid><orcidid>https://orcid.org/000000031254442X</orcidid><orcidid>https://orcid.org/0000000208924457</orcidid><orcidid>https://orcid.org/0000000279511991</orcidid><orcidid>https://orcid.org/0000000178904948</orcidid></search><sort><creationdate>20220617</creationdate><title>Perturbative Quantum Monte Carlo Method for Nuclear Physics</title><author>Lu, Bing-Nan ; Li, Ning ; Elhatisari, Serdar ; Ma, Yuan-Zhuo ; Lee, Dean ; Meißner, Ulf-G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-b908a49f585d136687d3d2fe204eee98389ca091c44af7223f28cb2161b4503b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Monte Carlo methods</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Bing-Nan</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Elhatisari, Serdar</creatorcontrib><creatorcontrib>Ma, Yuan-Zhuo</creatorcontrib><creatorcontrib>Lee, Dean</creatorcontrib><creatorcontrib>Meißner, Ulf-G.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Bing-Nan</au><au>Li, Ning</au><au>Elhatisari, Serdar</au><au>Ma, Yuan-Zhuo</au><au>Lee, Dean</au><au>Meißner, Ulf-G.</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbative Quantum Monte Carlo Method for Nuclear Physics</atitle><jtitle>Physical review letters</jtitle><date>2022-06-17</date><risdate>2022</risdate><volume>128</volume><issue>24</issue><spage>242501</spage><epage>242501</epage><pages>242501-242501</pages><artnum>242501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. Here we demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to 16O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second-order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevLett.128.242501</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7890-4948</orcidid><orcidid>https://orcid.org/0000-0002-7951-1991</orcidid><orcidid>https://orcid.org/0000-0003-1254-442X</orcidid><orcidid>https://orcid.org/0000-0002-0892-4457</orcidid><orcidid>https://orcid.org/000000031254442X</orcidid><orcidid>https://orcid.org/0000000208924457</orcidid><orcidid>https://orcid.org/0000000279511991</orcidid><orcidid>https://orcid.org/0000000178904948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2022-06, Vol.128 (24), p.242501-242501, Article 242501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1980294 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Monte Carlo methods NUCLEAR PHYSICS AND RADIATION PHYSICS Physics |
title | Perturbative Quantum Monte Carlo Method for Nuclear Physics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbative%20Quantum%20Monte%C2%A0Carlo%20Method%20for%20Nuclear%20Physics&rft.jtitle=Physical%20review%20letters&rft.au=Lu,%20Bing-Nan&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2022-06-17&rft.volume=128&rft.issue=24&rft.spage=242501&rft.epage=242501&rft.pages=242501-242501&rft.artnum=242501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.128.242501&rft_dat=%3Cproquest_osti_%3E2684099088%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684099088&rft_id=info:pmid/&rfr_iscdi=true |