Semiclassical shell-structure micro-macroscopic approach for the level density

Level density ρ(E,A) is derived for a one-component nucleon system with a given energy E and particle number A within the mean-field semiclassical periodic-orbit theory beyond the saddle-point method of the Fermi gas model. We obtain ρ∝Iν(S)/Sν, with Iν(S) being the modified Bessel function of the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C 2021-10, Vol.104 (4), Article 044319
Hauptverfasser: Magner, A. G., Sanzhur, A. I., Fedotkin, S. N., Levon, A. I., Shlomo, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. C
container_volume 104
creator Magner, A. G.
Sanzhur, A. I.
Fedotkin, S. N.
Levon, A. I.
Shlomo, S.
description Level density ρ(E,A) is derived for a one-component nucleon system with a given energy E and particle number A within the mean-field semiclassical periodic-orbit theory beyond the saddle-point method of the Fermi gas model. We obtain ρ∝Iν(S)/Sν, with Iν(S) being the modified Bessel function of the entropy S. Within the micro-macro-canonical approximation (MMA), for a small thermal excitation energy U, with respect to rotational excitations Erot, one obtains ν = 3/2 for ρ(E,A). In the case of excitation energy U larger than Erot but smaller than the neutron separation energy, one finds a larger value of ν = 5/2. A role of the fixed spin variables for rotating nuclei is discussed. The MMA level density ρ reaches the well-known grand-canonical ensemble limit (Fermi gas asymptote) for large S related to large excitation energies, and also reaches the finite micro-canonical limit for small combinatorial entropy S at low excitation energies (the constant “temperature” model). Fitting the ρ(E,A) of the MMA to the experimental data for low excitation energies, taking into account shell and, qualitatively, pairing effects, one obtains for the inverse level density parameter K a value which differs essentially from that parameter derived from data on neutron resonances.
doi_str_mv 10.1103/PhysRevC.104.044319
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1979827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_104_044319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-45a913c276b3751151211a2626965fe6e26af6e46b0b5eac8dc786333c6201813</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpoSHNL-hF9O5UK8mydSyhLwht6eMslM0aqzixkZRA_n0d0vayM-wOy_Axdg1iDiDU7Vt7SO-0X8xB6LnQWoE9YxOpjS2ster839flJZul9C2EACNsBWLCXj5oE7DzKQX0HU8tdV2Rctxh3kXi4y32xcaPM2E_BOR-GGLvseVNH3luiXe0p46vaZtCPlyxi8Z3iWa_OmVfD_efi6di-fr4vLhbFigrkwtdegvq6FeqKgFKkABeGmmsKRsyJI1vDGmzEquSPNZrrGqjlEIjBdSgpuzm9LdPObiEIRO22G-3hNmBrWwtqzGkTqFj-xSpcUMMGx8PDoQ7onN_6MaFdid06gcaBGN1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semiclassical shell-structure micro-macroscopic approach for the level density</title><source>American Physical Society Journals</source><creator>Magner, A. G. ; Sanzhur, A. I. ; Fedotkin, S. N. ; Levon, A. I. ; Shlomo, S.</creator><creatorcontrib>Magner, A. G. ; Sanzhur, A. I. ; Fedotkin, S. N. ; Levon, A. I. ; Shlomo, S.</creatorcontrib><description>Level density ρ(E,A) is derived for a one-component nucleon system with a given energy E and particle number A within the mean-field semiclassical periodic-orbit theory beyond the saddle-point method of the Fermi gas model. We obtain ρ∝Iν(S)/Sν, with Iν(S) being the modified Bessel function of the entropy S. Within the micro-macro-canonical approximation (MMA), for a small thermal excitation energy U, with respect to rotational excitations Erot, one obtains ν = 3/2 for ρ(E,A). In the case of excitation energy U larger than Erot but smaller than the neutron separation energy, one finds a larger value of ν = 5/2. A role of the fixed spin variables for rotating nuclei is discussed. The MMA level density ρ reaches the well-known grand-canonical ensemble limit (Fermi gas asymptote) for large S related to large excitation energies, and also reaches the finite micro-canonical limit for small combinatorial entropy S at low excitation energies (the constant “temperature” model). Fitting the ρ(E,A) of the MMA to the experimental data for low excitation energies, taking into account shell and, qualitatively, pairing effects, one obtains for the inverse level density parameter K a value which differs essentially from that parameter derived from data on neutron resonances.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.104.044319</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>energy levels &amp; level densities ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; nuclear structure &amp; decays ; Physics ; semiclassical methods</subject><ispartof>Physical review. C, 2021-10, Vol.104 (4), Article 044319</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-45a913c276b3751151211a2626965fe6e26af6e46b0b5eac8dc786333c6201813</citedby><cites>FETCH-LOGICAL-c276t-45a913c276b3751151211a2626965fe6e26af6e46b0b5eac8dc786333c6201813</cites><orcidid>0000-0002-4049-7563 ; 0000-0003-4751-1003 ; 0000-0003-1694-640X ; 0000-0002-5953-6278 ; 0000000259536278 ; 0000000347511003 ; 0000000240497563 ; 000000031694640X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1979827$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Magner, A. G.</creatorcontrib><creatorcontrib>Sanzhur, A. I.</creatorcontrib><creatorcontrib>Fedotkin, S. N.</creatorcontrib><creatorcontrib>Levon, A. I.</creatorcontrib><creatorcontrib>Shlomo, S.</creatorcontrib><title>Semiclassical shell-structure micro-macroscopic approach for the level density</title><title>Physical review. C</title><description>Level density ρ(E,A) is derived for a one-component nucleon system with a given energy E and particle number A within the mean-field semiclassical periodic-orbit theory beyond the saddle-point method of the Fermi gas model. We obtain ρ∝Iν(S)/Sν, with Iν(S) being the modified Bessel function of the entropy S. Within the micro-macro-canonical approximation (MMA), for a small thermal excitation energy U, with respect to rotational excitations Erot, one obtains ν = 3/2 for ρ(E,A). In the case of excitation energy U larger than Erot but smaller than the neutron separation energy, one finds a larger value of ν = 5/2. A role of the fixed spin variables for rotating nuclei is discussed. The MMA level density ρ reaches the well-known grand-canonical ensemble limit (Fermi gas asymptote) for large S related to large excitation energies, and also reaches the finite micro-canonical limit for small combinatorial entropy S at low excitation energies (the constant “temperature” model). Fitting the ρ(E,A) of the MMA to the experimental data for low excitation energies, taking into account shell and, qualitatively, pairing effects, one obtains for the inverse level density parameter K a value which differs essentially from that parameter derived from data on neutron resonances.</description><subject>energy levels &amp; level densities</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>nuclear structure &amp; decays</subject><subject>Physics</subject><subject>semiclassical methods</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhEVpoSHNL-hF9O5UK8mydSyhLwht6eMslM0aqzixkZRA_n0d0vayM-wOy_Axdg1iDiDU7Vt7SO-0X8xB6LnQWoE9YxOpjS2ster839flJZul9C2EACNsBWLCXj5oE7DzKQX0HU8tdV2Rctxh3kXi4y32xcaPM2E_BOR-GGLvseVNH3luiXe0p46vaZtCPlyxi8Z3iWa_OmVfD_efi6di-fr4vLhbFigrkwtdegvq6FeqKgFKkABeGmmsKRsyJI1vDGmzEquSPNZrrGqjlEIjBdSgpuzm9LdPObiEIRO22G-3hNmBrWwtqzGkTqFj-xSpcUMMGx8PDoQ7onN_6MaFdid06gcaBGN1</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Magner, A. G.</creator><creator>Sanzhur, A. I.</creator><creator>Fedotkin, S. N.</creator><creator>Levon, A. I.</creator><creator>Shlomo, S.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4049-7563</orcidid><orcidid>https://orcid.org/0000-0003-4751-1003</orcidid><orcidid>https://orcid.org/0000-0003-1694-640X</orcidid><orcidid>https://orcid.org/0000-0002-5953-6278</orcidid><orcidid>https://orcid.org/0000000259536278</orcidid><orcidid>https://orcid.org/0000000347511003</orcidid><orcidid>https://orcid.org/0000000240497563</orcidid><orcidid>https://orcid.org/000000031694640X</orcidid></search><sort><creationdate>20211018</creationdate><title>Semiclassical shell-structure micro-macroscopic approach for the level density</title><author>Magner, A. G. ; Sanzhur, A. I. ; Fedotkin, S. N. ; Levon, A. I. ; Shlomo, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-45a913c276b3751151211a2626965fe6e26af6e46b0b5eac8dc786333c6201813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>energy levels &amp; level densities</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>nuclear structure &amp; decays</topic><topic>Physics</topic><topic>semiclassical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magner, A. G.</creatorcontrib><creatorcontrib>Sanzhur, A. I.</creatorcontrib><creatorcontrib>Fedotkin, S. N.</creatorcontrib><creatorcontrib>Levon, A. I.</creatorcontrib><creatorcontrib>Shlomo, S.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magner, A. G.</au><au>Sanzhur, A. I.</au><au>Fedotkin, S. N.</au><au>Levon, A. I.</au><au>Shlomo, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical shell-structure micro-macroscopic approach for the level density</atitle><jtitle>Physical review. C</jtitle><date>2021-10-18</date><risdate>2021</risdate><volume>104</volume><issue>4</issue><artnum>044319</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>Level density ρ(E,A) is derived for a one-component nucleon system with a given energy E and particle number A within the mean-field semiclassical periodic-orbit theory beyond the saddle-point method of the Fermi gas model. We obtain ρ∝Iν(S)/Sν, with Iν(S) being the modified Bessel function of the entropy S. Within the micro-macro-canonical approximation (MMA), for a small thermal excitation energy U, with respect to rotational excitations Erot, one obtains ν = 3/2 for ρ(E,A). In the case of excitation energy U larger than Erot but smaller than the neutron separation energy, one finds a larger value of ν = 5/2. A role of the fixed spin variables for rotating nuclei is discussed. The MMA level density ρ reaches the well-known grand-canonical ensemble limit (Fermi gas asymptote) for large S related to large excitation energies, and also reaches the finite micro-canonical limit for small combinatorial entropy S at low excitation energies (the constant “temperature” model). Fitting the ρ(E,A) of the MMA to the experimental data for low excitation energies, taking into account shell and, qualitatively, pairing effects, one obtains for the inverse level density parameter K a value which differs essentially from that parameter derived from data on neutron resonances.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.104.044319</doi><orcidid>https://orcid.org/0000-0002-4049-7563</orcidid><orcidid>https://orcid.org/0000-0003-4751-1003</orcidid><orcidid>https://orcid.org/0000-0003-1694-640X</orcidid><orcidid>https://orcid.org/0000-0002-5953-6278</orcidid><orcidid>https://orcid.org/0000000259536278</orcidid><orcidid>https://orcid.org/0000000347511003</orcidid><orcidid>https://orcid.org/0000000240497563</orcidid><orcidid>https://orcid.org/000000031694640X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9985
ispartof Physical review. C, 2021-10, Vol.104 (4), Article 044319
issn 2469-9985
2469-9993
language eng
recordid cdi_osti_scitechconnect_1979827
source American Physical Society Journals
subjects energy levels & level densities
NUCLEAR PHYSICS AND RADIATION PHYSICS
nuclear structure & decays
Physics
semiclassical methods
title Semiclassical shell-structure micro-macroscopic approach for the level density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20shell-structure%20micro-macroscopic%20approach%20for%20the%20level%20density&rft.jtitle=Physical%20review.%20C&rft.au=Magner,%20A.%20G.&rft.date=2021-10-18&rft.volume=104&rft.issue=4&rft.artnum=044319&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.104.044319&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_104_044319%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true