Measurement-induced quantum phases realized in a trapped-ion quantum computer

Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2022-07, Vol.18 (7), p.760-764
Hauptverfasser: Noel, Crystal, Niroula, Pradeep, Zhu, Daiwei, Risinger, Andrew, Egan, Laird, Biswas, Debopriyo, Cetina, Marko, Gorshkov, Alexey V., Gullans, Michael J., Huse, David A., Monroe, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 7
container_start_page 760
container_title Nature physics
container_volume 18
creator Noel, Crystal
Niroula, Pradeep
Zhu, Daiwei
Risinger, Andrew
Egan, Laird
Biswas, Debopriyo
Cetina, Marko
Gorshkov, Alexey V.
Gullans, Michael J.
Huse, David A.
Monroe, Christopher
description Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes 3 – 5 . As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold 6 . Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times 6 , 7 . We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge. Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.
doi_str_mv 10.1038/s41567-022-01619-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1978673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688786386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVdF19G8mnSWMvgCBze6Dkl663SYpp0kXeivN2Nl3AkX7uXyncPhIHRJyQ0lvLqNgpZSYcIYJlTSBVZHaEaVKDETFT0-3IqforMYN4QIJimfodUKTBwDdOATbn09OqiL3Wh8GrtiWJsIsQhgtu1X_re-MEUKZhigxm3vD6Dru2FMEM7RSWO2ES5-9xy9P9y_LZ_wy-vj8_LuBTsuZMJ1DtI4JQRrVEOgIcIxcMRaw7kFS2shzIKCKi1xrOZWWmN5aThl0pak5nyOribfPqZWR9cmcGvXew8uabpQlVR76HqChtDvRohJb_ox-JxLM1lVGeJ55ohNlAt9jAEaPYS2M-FTU6L33eqpW5271T_dapVFfBLFDPsPCH_W_6i-AYAkfRo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688786386</pqid></control><display><type>article</type><title>Measurement-induced quantum phases realized in a trapped-ion quantum computer</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Noel, Crystal ; Niroula, Pradeep ; Zhu, Daiwei ; Risinger, Andrew ; Egan, Laird ; Biswas, Debopriyo ; Cetina, Marko ; Gorshkov, Alexey V. ; Gullans, Michael J. ; Huse, David A. ; Monroe, Christopher</creator><creatorcontrib>Noel, Crystal ; Niroula, Pradeep ; Zhu, Daiwei ; Risinger, Andrew ; Egan, Laird ; Biswas, Debopriyo ; Cetina, Marko ; Gorshkov, Alexey V. ; Gullans, Michael J. ; Huse, David A. ; Monroe, Christopher ; Univ. of Maryland, College Park, MD (United States)</creatorcontrib><description>Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes 3 – 5 . As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold 6 . Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times 6 , 7 . We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge. Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01619-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2795 ; 639/766/483/481 ; Atomic ; Circuits ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Critical point ; Error correction ; Fault tolerance ; Initial conditions ; Letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Phase transitions ; Phases ; Physics ; Physics and Astronomy ; Purification ; Quantum computers ; Quantum computing ; Theoretical</subject><ispartof>Nature physics, 2022-07, Vol.18 (7), p.760-764</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33</citedby><cites>FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33</cites><orcidid>0000-0002-2977-2747 ; 0000-0003-0509-3421 ; 0000-0003-0019-256X ; 0000000229772747 ; 000000030019256X ; 0000000305093421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1978673$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Noel, Crystal</creatorcontrib><creatorcontrib>Niroula, Pradeep</creatorcontrib><creatorcontrib>Zhu, Daiwei</creatorcontrib><creatorcontrib>Risinger, Andrew</creatorcontrib><creatorcontrib>Egan, Laird</creatorcontrib><creatorcontrib>Biswas, Debopriyo</creatorcontrib><creatorcontrib>Cetina, Marko</creatorcontrib><creatorcontrib>Gorshkov, Alexey V.</creatorcontrib><creatorcontrib>Gullans, Michael J.</creatorcontrib><creatorcontrib>Huse, David A.</creatorcontrib><creatorcontrib>Monroe, Christopher</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><title>Measurement-induced quantum phases realized in a trapped-ion quantum computer</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes 3 – 5 . As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold 6 . Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times 6 , 7 . We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge. Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.</description><subject>639/766/119/2795</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Critical point</subject><subject>Error correction</subject><subject>Fault tolerance</subject><subject>Initial conditions</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Purification</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVdF19G8mnSWMvgCBze6Dkl663SYpp0kXeivN2Nl3AkX7uXyncPhIHRJyQ0lvLqNgpZSYcIYJlTSBVZHaEaVKDETFT0-3IqforMYN4QIJimfodUKTBwDdOATbn09OqiL3Wh8GrtiWJsIsQhgtu1X_re-MEUKZhigxm3vD6Dru2FMEM7RSWO2ES5-9xy9P9y_LZ_wy-vj8_LuBTsuZMJ1DtI4JQRrVEOgIcIxcMRaw7kFS2shzIKCKi1xrOZWWmN5aThl0pak5nyOribfPqZWR9cmcGvXew8uabpQlVR76HqChtDvRohJb_ox-JxLM1lVGeJ55ohNlAt9jAEaPYS2M-FTU6L33eqpW5271T_dapVFfBLFDPsPCH_W_6i-AYAkfRo</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Noel, Crystal</creator><creator>Niroula, Pradeep</creator><creator>Zhu, Daiwei</creator><creator>Risinger, Andrew</creator><creator>Egan, Laird</creator><creator>Biswas, Debopriyo</creator><creator>Cetina, Marko</creator><creator>Gorshkov, Alexey V.</creator><creator>Gullans, Michael J.</creator><creator>Huse, David A.</creator><creator>Monroe, Christopher</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2977-2747</orcidid><orcidid>https://orcid.org/0000-0003-0509-3421</orcidid><orcidid>https://orcid.org/0000-0003-0019-256X</orcidid><orcidid>https://orcid.org/0000000229772747</orcidid><orcidid>https://orcid.org/000000030019256X</orcidid><orcidid>https://orcid.org/0000000305093421</orcidid></search><sort><creationdate>20220701</creationdate><title>Measurement-induced quantum phases realized in a trapped-ion quantum computer</title><author>Noel, Crystal ; Niroula, Pradeep ; Zhu, Daiwei ; Risinger, Andrew ; Egan, Laird ; Biswas, Debopriyo ; Cetina, Marko ; Gorshkov, Alexey V. ; Gullans, Michael J. ; Huse, David A. ; Monroe, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/119/2795</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Critical point</topic><topic>Error correction</topic><topic>Fault tolerance</topic><topic>Initial conditions</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Purification</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noel, Crystal</creatorcontrib><creatorcontrib>Niroula, Pradeep</creatorcontrib><creatorcontrib>Zhu, Daiwei</creatorcontrib><creatorcontrib>Risinger, Andrew</creatorcontrib><creatorcontrib>Egan, Laird</creatorcontrib><creatorcontrib>Biswas, Debopriyo</creatorcontrib><creatorcontrib>Cetina, Marko</creatorcontrib><creatorcontrib>Gorshkov, Alexey V.</creatorcontrib><creatorcontrib>Gullans, Michael J.</creatorcontrib><creatorcontrib>Huse, David A.</creatorcontrib><creatorcontrib>Monroe, Christopher</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noel, Crystal</au><au>Niroula, Pradeep</au><au>Zhu, Daiwei</au><au>Risinger, Andrew</au><au>Egan, Laird</au><au>Biswas, Debopriyo</au><au>Cetina, Marko</au><au>Gorshkov, Alexey V.</au><au>Gullans, Michael J.</au><au>Huse, David A.</au><au>Monroe, Christopher</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement-induced quantum phases realized in a trapped-ion quantum computer</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>760</spage><epage>764</epage><pages>760-764</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes 3 – 5 . As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold 6 . Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times 6 , 7 . We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge. Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01619-7</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2977-2747</orcidid><orcidid>https://orcid.org/0000-0003-0509-3421</orcidid><orcidid>https://orcid.org/0000-0003-0019-256X</orcidid><orcidid>https://orcid.org/0000000229772747</orcidid><orcidid>https://orcid.org/000000030019256X</orcidid><orcidid>https://orcid.org/0000000305093421</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2022-07, Vol.18 (7), p.760-764
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1978673
source Nature Journals Online; Alma/SFX Local Collection
subjects 639/766/119/2795
639/766/483/481
Atomic
Circuits
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Critical point
Error correction
Fault tolerance
Initial conditions
Letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Phase transitions
Phases
Physics
Physics and Astronomy
Purification
Quantum computers
Quantum computing
Theoretical
title Measurement-induced quantum phases realized in a trapped-ion quantum computer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement-induced%20quantum%20phases%20realized%20in%20a%20trapped-ion%20quantum%20computer&rft.jtitle=Nature%20physics&rft.au=Noel,%20Crystal&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2022-07-01&rft.volume=18&rft.issue=7&rft.spage=760&rft.epage=764&rft.pages=760-764&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01619-7&rft_dat=%3Cproquest_osti_%3E2688786386%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688786386&rft_id=info:pmid/&rfr_iscdi=true