Measurement-induced quantum phases realized in a trapped-ion quantum computer
Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary...
Gespeichert in:
Veröffentlicht in: | Nature physics 2022-07, Vol.18 (7), p.760-764 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 764 |
---|---|
container_issue | 7 |
container_start_page | 760 |
container_title | Nature physics |
container_volume | 18 |
creator | Noel, Crystal Niroula, Pradeep Zhu, Daiwei Risinger, Andrew Egan, Laird Biswas, Debopriyo Cetina, Marko Gorshkov, Alexey V. Gullans, Michael J. Huse, David A. Monroe, Christopher |
description | Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment
1
,
2
. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes
3
–
5
. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold
6
. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times
6
,
7
. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.
Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer. |
doi_str_mv | 10.1038/s41567-022-01619-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1978673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688786386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVdF19G8mnSWMvgCBze6Dkl663SYpp0kXeivN2Nl3AkX7uXyncPhIHRJyQ0lvLqNgpZSYcIYJlTSBVZHaEaVKDETFT0-3IqforMYN4QIJimfodUKTBwDdOATbn09OqiL3Wh8GrtiWJsIsQhgtu1X_re-MEUKZhigxm3vD6Dru2FMEM7RSWO2ES5-9xy9P9y_LZ_wy-vj8_LuBTsuZMJ1DtI4JQRrVEOgIcIxcMRaw7kFS2shzIKCKi1xrOZWWmN5aThl0pak5nyOribfPqZWR9cmcGvXew8uabpQlVR76HqChtDvRohJb_ox-JxLM1lVGeJ55ohNlAt9jAEaPYS2M-FTU6L33eqpW5271T_dapVFfBLFDPsPCH_W_6i-AYAkfRo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688786386</pqid></control><display><type>article</type><title>Measurement-induced quantum phases realized in a trapped-ion quantum computer</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Noel, Crystal ; Niroula, Pradeep ; Zhu, Daiwei ; Risinger, Andrew ; Egan, Laird ; Biswas, Debopriyo ; Cetina, Marko ; Gorshkov, Alexey V. ; Gullans, Michael J. ; Huse, David A. ; Monroe, Christopher</creator><creatorcontrib>Noel, Crystal ; Niroula, Pradeep ; Zhu, Daiwei ; Risinger, Andrew ; Egan, Laird ; Biswas, Debopriyo ; Cetina, Marko ; Gorshkov, Alexey V. ; Gullans, Michael J. ; Huse, David A. ; Monroe, Christopher ; Univ. of Maryland, College Park, MD (United States)</creatorcontrib><description>Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment
1
,
2
. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes
3
–
5
. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold
6
. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times
6
,
7
. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.
Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01619-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2795 ; 639/766/483/481 ; Atomic ; Circuits ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Critical point ; Error correction ; Fault tolerance ; Initial conditions ; Letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Phase transitions ; Phases ; Physics ; Physics and Astronomy ; Purification ; Quantum computers ; Quantum computing ; Theoretical</subject><ispartof>Nature physics, 2022-07, Vol.18 (7), p.760-764</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33</citedby><cites>FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33</cites><orcidid>0000-0002-2977-2747 ; 0000-0003-0509-3421 ; 0000-0003-0019-256X ; 0000000229772747 ; 000000030019256X ; 0000000305093421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1978673$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Noel, Crystal</creatorcontrib><creatorcontrib>Niroula, Pradeep</creatorcontrib><creatorcontrib>Zhu, Daiwei</creatorcontrib><creatorcontrib>Risinger, Andrew</creatorcontrib><creatorcontrib>Egan, Laird</creatorcontrib><creatorcontrib>Biswas, Debopriyo</creatorcontrib><creatorcontrib>Cetina, Marko</creatorcontrib><creatorcontrib>Gorshkov, Alexey V.</creatorcontrib><creatorcontrib>Gullans, Michael J.</creatorcontrib><creatorcontrib>Huse, David A.</creatorcontrib><creatorcontrib>Monroe, Christopher</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><title>Measurement-induced quantum phases realized in a trapped-ion quantum computer</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment
1
,
2
. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes
3
–
5
. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold
6
. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times
6
,
7
. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.
Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.</description><subject>639/766/119/2795</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Critical point</subject><subject>Error correction</subject><subject>Fault tolerance</subject><subject>Initial conditions</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Purification</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVdF19G8mnSWMvgCBze6Dkl663SYpp0kXeivN2Nl3AkX7uXyncPhIHRJyQ0lvLqNgpZSYcIYJlTSBVZHaEaVKDETFT0-3IqforMYN4QIJimfodUKTBwDdOATbn09OqiL3Wh8GrtiWJsIsQhgtu1X_re-MEUKZhigxm3vD6Dru2FMEM7RSWO2ES5-9xy9P9y_LZ_wy-vj8_LuBTsuZMJ1DtI4JQRrVEOgIcIxcMRaw7kFS2shzIKCKi1xrOZWWmN5aThl0pak5nyOribfPqZWR9cmcGvXew8uabpQlVR76HqChtDvRohJb_ox-JxLM1lVGeJ55ohNlAt9jAEaPYS2M-FTU6L33eqpW5271T_dapVFfBLFDPsPCH_W_6i-AYAkfRo</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Noel, Crystal</creator><creator>Niroula, Pradeep</creator><creator>Zhu, Daiwei</creator><creator>Risinger, Andrew</creator><creator>Egan, Laird</creator><creator>Biswas, Debopriyo</creator><creator>Cetina, Marko</creator><creator>Gorshkov, Alexey V.</creator><creator>Gullans, Michael J.</creator><creator>Huse, David A.</creator><creator>Monroe, Christopher</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2977-2747</orcidid><orcidid>https://orcid.org/0000-0003-0509-3421</orcidid><orcidid>https://orcid.org/0000-0003-0019-256X</orcidid><orcidid>https://orcid.org/0000000229772747</orcidid><orcidid>https://orcid.org/000000030019256X</orcidid><orcidid>https://orcid.org/0000000305093421</orcidid></search><sort><creationdate>20220701</creationdate><title>Measurement-induced quantum phases realized in a trapped-ion quantum computer</title><author>Noel, Crystal ; Niroula, Pradeep ; Zhu, Daiwei ; Risinger, Andrew ; Egan, Laird ; Biswas, Debopriyo ; Cetina, Marko ; Gorshkov, Alexey V. ; Gullans, Michael J. ; Huse, David A. ; Monroe, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/119/2795</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Critical point</topic><topic>Error correction</topic><topic>Fault tolerance</topic><topic>Initial conditions</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Purification</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noel, Crystal</creatorcontrib><creatorcontrib>Niroula, Pradeep</creatorcontrib><creatorcontrib>Zhu, Daiwei</creatorcontrib><creatorcontrib>Risinger, Andrew</creatorcontrib><creatorcontrib>Egan, Laird</creatorcontrib><creatorcontrib>Biswas, Debopriyo</creatorcontrib><creatorcontrib>Cetina, Marko</creatorcontrib><creatorcontrib>Gorshkov, Alexey V.</creatorcontrib><creatorcontrib>Gullans, Michael J.</creatorcontrib><creatorcontrib>Huse, David A.</creatorcontrib><creatorcontrib>Monroe, Christopher</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noel, Crystal</au><au>Niroula, Pradeep</au><au>Zhu, Daiwei</au><au>Risinger, Andrew</au><au>Egan, Laird</au><au>Biswas, Debopriyo</au><au>Cetina, Marko</au><au>Gorshkov, Alexey V.</au><au>Gullans, Michael J.</au><au>Huse, David A.</au><au>Monroe, Christopher</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement-induced quantum phases realized in a trapped-ion quantum computer</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>760</spage><epage>764</epage><pages>760-764</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment
1
,
2
. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes
3
–
5
. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold
6
. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times
6
,
7
. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.
Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01619-7</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2977-2747</orcidid><orcidid>https://orcid.org/0000-0003-0509-3421</orcidid><orcidid>https://orcid.org/0000-0003-0019-256X</orcidid><orcidid>https://orcid.org/0000000229772747</orcidid><orcidid>https://orcid.org/000000030019256X</orcidid><orcidid>https://orcid.org/0000000305093421</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2022-07, Vol.18 (7), p.760-764 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_osti_scitechconnect_1978673 |
source | Nature Journals Online; Alma/SFX Local Collection |
subjects | 639/766/119/2795 639/766/483/481 Atomic Circuits Classical and Continuum Physics Complex Systems Condensed Matter Physics Critical point Error correction Fault tolerance Initial conditions Letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Phase transitions Phases Physics Physics and Astronomy Purification Quantum computers Quantum computing Theoretical |
title | Measurement-induced quantum phases realized in a trapped-ion quantum computer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement-induced%20quantum%20phases%20realized%20in%20a%20trapped-ion%20quantum%20computer&rft.jtitle=Nature%20physics&rft.au=Noel,%20Crystal&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2022-07-01&rft.volume=18&rft.issue=7&rft.spage=760&rft.epage=764&rft.pages=760-764&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01619-7&rft_dat=%3Cproquest_osti_%3E2688786386%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688786386&rft_id=info:pmid/&rfr_iscdi=true |