Development of grain-scale slip activity and lattice rotation fields in Inconel 718

[Display omitted] Using a combination of in-situ high-resolution digital image correlation (HR-DIC), Heaviside-DIC method (H-DIC), and crystal plasticity finite element (CPFE), we investigate the evolution of intragranular lattice rotations and slip activity during monotonic and cyclic loading in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2022-03, Vol.226 (C), p.117627, Article 117627
Hauptverfasser: Hestroffer, Jonathan M., Latypov, Marat I., Stinville, Jean-Charles, Charpagne, Marie-Agathe, Valle, Valery, Miller, Matthew P., Pollock, Tresa M., Beyerlein, Irene J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 117627
container_title Acta materialia
container_volume 226
creator Hestroffer, Jonathan M.
Latypov, Marat I.
Stinville, Jean-Charles
Charpagne, Marie-Agathe
Valle, Valery
Miller, Matthew P.
Pollock, Tresa M.
Beyerlein, Irene J.
description [Display omitted] Using a combination of in-situ high-resolution digital image correlation (HR-DIC), Heaviside-DIC method (H-DIC), and crystal plasticity finite element (CPFE), we investigate the evolution of intragranular lattice rotations and slip activity during monotonic and cyclic loading in a high performance, polycrystalline face centered cubic material. The CPFE employs a quasi-3D model microstructure, which is a highly resolved mirror representation of the experimental in-situ test sample. In agreement, the measurements and calculations reveal that most grains, regardless of their size and lattice orientation, develop intragranular lattice rotation gradients that span the grain. For a small cluster of grains on the deformed material, we perform HR-DIC analysis of slip lines to demonstrate agreement in the active slip systems and changes in this local slip activity across the individual grains. The combined analysis reveals that deforming grains are divided into sub-granular regions of uniform lattice rotation and these regions are most often associated with only one or two active slip systems. The gradient lines that divide them correspond to changes in the predominant slip system. The model is used to examine the evolution of intragranular lattice rotation in a single fully reversed tension-compression cycle. The calculations indicate that intragranular gradients intensify during the reverse loading path as nearest neighboring regions appear to shed lattice rotation, increasing the lattice rotation in some regions, while shutting down rotation in neighboring regions. These findings provide insight into the irreversible changes that develop within deforming grains at the scale of the grain, particularly the heterogeneous development of intragranular lattice rotation in early stages of deformation, which could serve as precursors to localization.
doi_str_mv 10.1016/j.actamat.2022.117627
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645422000118</els_id><sourcerecordid>S1359645422000118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5bf91614f85d8014f3472501f836727719ab8e5a393d1ca8382c6f12b082c3053</originalsourceid><addsrcrecordid>eNqFUE1LAzEUXETBWv0JQvDmYde8fGyyJyn1o4WCB_Uc0mzWpmyTsgkL_ffussWrpxkeM8O8ybJ7wAVgKJ_2hTZJH3QqCCakABAlERfZDKSgOWGcXg6c8iovGWfX2U2Me4yBCIZn2eeL7W0bjgfrEwoN-um083k0urUotu6IhmjXu3RC2teo1Sk5Y1EXkk4ueNQ429YROY_W3gRvWyRA3mZXjW6jvTvjPPt-e_1arvLNx_t6udjkhoFIOd82FZTAGslriQekTBCOoZG0FEQIqPRWWq5pRWswWlJJTNkA2eKBUMzpPHuYckNMTkXjkjW7oYW3JimoRCnkKHqcRDvdqmPnDro7qaCdWi02arxhKhmTsuxh0PJJa7oQY2ebPwNgNU6t9uo8tRqnVtPUg-958tnh297ZbixjvbG168YudXD_JPwCSVWHSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of grain-scale slip activity and lattice rotation fields in Inconel 718</title><source>Elsevier ScienceDirect Journals</source><creator>Hestroffer, Jonathan M. ; Latypov, Marat I. ; Stinville, Jean-Charles ; Charpagne, Marie-Agathe ; Valle, Valery ; Miller, Matthew P. ; Pollock, Tresa M. ; Beyerlein, Irene J.</creator><creatorcontrib>Hestroffer, Jonathan M. ; Latypov, Marat I. ; Stinville, Jean-Charles ; Charpagne, Marie-Agathe ; Valle, Valery ; Miller, Matthew P. ; Pollock, Tresa M. ; Beyerlein, Irene J. ; Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><description>[Display omitted] Using a combination of in-situ high-resolution digital image correlation (HR-DIC), Heaviside-DIC method (H-DIC), and crystal plasticity finite element (CPFE), we investigate the evolution of intragranular lattice rotations and slip activity during monotonic and cyclic loading in a high performance, polycrystalline face centered cubic material. The CPFE employs a quasi-3D model microstructure, which is a highly resolved mirror representation of the experimental in-situ test sample. In agreement, the measurements and calculations reveal that most grains, regardless of their size and lattice orientation, develop intragranular lattice rotation gradients that span the grain. For a small cluster of grains on the deformed material, we perform HR-DIC analysis of slip lines to demonstrate agreement in the active slip systems and changes in this local slip activity across the individual grains. The combined analysis reveals that deforming grains are divided into sub-granular regions of uniform lattice rotation and these regions are most often associated with only one or two active slip systems. The gradient lines that divide them correspond to changes in the predominant slip system. The model is used to examine the evolution of intragranular lattice rotation in a single fully reversed tension-compression cycle. The calculations indicate that intragranular gradients intensify during the reverse loading path as nearest neighboring regions appear to shed lattice rotation, increasing the lattice rotation in some regions, while shutting down rotation in neighboring regions. These findings provide insight into the irreversible changes that develop within deforming grains at the scale of the grain, particularly the heterogeneous development of intragranular lattice rotation in early stages of deformation, which could serve as precursors to localization.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2022.117627</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Acoustics ; Automatic ; Biomechanics ; Chemical Sciences ; Crystal plasticity ; Electric power ; Electromagnetism ; ENGINEERING ; Engineering Sciences ; Fluid mechanics ; Grain boundaries ; High-Resolution digital image correlation ; Material chemistry ; Materials and structures in mechanics ; MATERIALS SCIENCE ; Mathematical Physics ; Mechanics ; Microstructure ; Physics ; Polymers ; Quantum Physics ; Reactive fluid environment ; Superalloys ; Thermics ; Vibrations</subject><ispartof>Acta materialia, 2022-03, Vol.226 (C), p.117627, Article 117627</ispartof><rights>2022 Acta Materialia Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5bf91614f85d8014f3472501f836727719ab8e5a393d1ca8382c6f12b082c3053</citedby><cites>FETCH-LOGICAL-c417t-5bf91614f85d8014f3472501f836727719ab8e5a393d1ca8382c6f12b082c3053</cites><orcidid>0000-0002-3776-6945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645422000118$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03844886$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1976785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hestroffer, Jonathan M.</creatorcontrib><creatorcontrib>Latypov, Marat I.</creatorcontrib><creatorcontrib>Stinville, Jean-Charles</creatorcontrib><creatorcontrib>Charpagne, Marie-Agathe</creatorcontrib><creatorcontrib>Valle, Valery</creatorcontrib><creatorcontrib>Miller, Matthew P.</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><title>Development of grain-scale slip activity and lattice rotation fields in Inconel 718</title><title>Acta materialia</title><description>[Display omitted] Using a combination of in-situ high-resolution digital image correlation (HR-DIC), Heaviside-DIC method (H-DIC), and crystal plasticity finite element (CPFE), we investigate the evolution of intragranular lattice rotations and slip activity during monotonic and cyclic loading in a high performance, polycrystalline face centered cubic material. The CPFE employs a quasi-3D model microstructure, which is a highly resolved mirror representation of the experimental in-situ test sample. In agreement, the measurements and calculations reveal that most grains, regardless of their size and lattice orientation, develop intragranular lattice rotation gradients that span the grain. For a small cluster of grains on the deformed material, we perform HR-DIC analysis of slip lines to demonstrate agreement in the active slip systems and changes in this local slip activity across the individual grains. The combined analysis reveals that deforming grains are divided into sub-granular regions of uniform lattice rotation and these regions are most often associated with only one or two active slip systems. The gradient lines that divide them correspond to changes in the predominant slip system. The model is used to examine the evolution of intragranular lattice rotation in a single fully reversed tension-compression cycle. The calculations indicate that intragranular gradients intensify during the reverse loading path as nearest neighboring regions appear to shed lattice rotation, increasing the lattice rotation in some regions, while shutting down rotation in neighboring regions. These findings provide insight into the irreversible changes that develop within deforming grains at the scale of the grain, particularly the heterogeneous development of intragranular lattice rotation in early stages of deformation, which could serve as precursors to localization.</description><subject>Acoustics</subject><subject>Automatic</subject><subject>Biomechanics</subject><subject>Chemical Sciences</subject><subject>Crystal plasticity</subject><subject>Electric power</subject><subject>Electromagnetism</subject><subject>ENGINEERING</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Grain boundaries</subject><subject>High-Resolution digital image correlation</subject><subject>Material chemistry</subject><subject>Materials and structures in mechanics</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical Physics</subject><subject>Mechanics</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Polymers</subject><subject>Quantum Physics</subject><subject>Reactive fluid environment</subject><subject>Superalloys</subject><subject>Thermics</subject><subject>Vibrations</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUXETBWv0JQvDmYde8fGyyJyn1o4WCB_Uc0mzWpmyTsgkL_ffussWrpxkeM8O8ybJ7wAVgKJ_2hTZJH3QqCCakABAlERfZDKSgOWGcXg6c8iovGWfX2U2Me4yBCIZn2eeL7W0bjgfrEwoN-um083k0urUotu6IhmjXu3RC2teo1Sk5Y1EXkk4ueNQ429YROY_W3gRvWyRA3mZXjW6jvTvjPPt-e_1arvLNx_t6udjkhoFIOd82FZTAGslriQekTBCOoZG0FEQIqPRWWq5pRWswWlJJTNkA2eKBUMzpPHuYckNMTkXjkjW7oYW3JimoRCnkKHqcRDvdqmPnDro7qaCdWi02arxhKhmTsuxh0PJJa7oQY2ebPwNgNU6t9uo8tRqnVtPUg-958tnh297ZbixjvbG168YudXD_JPwCSVWHSw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Hestroffer, Jonathan M.</creator><creator>Latypov, Marat I.</creator><creator>Stinville, Jean-Charles</creator><creator>Charpagne, Marie-Agathe</creator><creator>Valle, Valery</creator><creator>Miller, Matthew P.</creator><creator>Pollock, Tresa M.</creator><creator>Beyerlein, Irene J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3776-6945</orcidid></search><sort><creationdate>20220301</creationdate><title>Development of grain-scale slip activity and lattice rotation fields in Inconel 718</title><author>Hestroffer, Jonathan M. ; Latypov, Marat I. ; Stinville, Jean-Charles ; Charpagne, Marie-Agathe ; Valle, Valery ; Miller, Matthew P. ; Pollock, Tresa M. ; Beyerlein, Irene J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5bf91614f85d8014f3472501f836727719ab8e5a393d1ca8382c6f12b082c3053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Automatic</topic><topic>Biomechanics</topic><topic>Chemical Sciences</topic><topic>Crystal plasticity</topic><topic>Electric power</topic><topic>Electromagnetism</topic><topic>ENGINEERING</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Grain boundaries</topic><topic>High-Resolution digital image correlation</topic><topic>Material chemistry</topic><topic>Materials and structures in mechanics</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical Physics</topic><topic>Mechanics</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Polymers</topic><topic>Quantum Physics</topic><topic>Reactive fluid environment</topic><topic>Superalloys</topic><topic>Thermics</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hestroffer, Jonathan M.</creatorcontrib><creatorcontrib>Latypov, Marat I.</creatorcontrib><creatorcontrib>Stinville, Jean-Charles</creatorcontrib><creatorcontrib>Charpagne, Marie-Agathe</creatorcontrib><creatorcontrib>Valle, Valery</creatorcontrib><creatorcontrib>Miller, Matthew P.</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hestroffer, Jonathan M.</au><au>Latypov, Marat I.</au><au>Stinville, Jean-Charles</au><au>Charpagne, Marie-Agathe</au><au>Valle, Valery</au><au>Miller, Matthew P.</au><au>Pollock, Tresa M.</au><au>Beyerlein, Irene J.</au><aucorp>Univ. of California, Santa Barbara, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of grain-scale slip activity and lattice rotation fields in Inconel 718</atitle><jtitle>Acta materialia</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>226</volume><issue>C</issue><spage>117627</spage><pages>117627-</pages><artnum>117627</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>[Display omitted] Using a combination of in-situ high-resolution digital image correlation (HR-DIC), Heaviside-DIC method (H-DIC), and crystal plasticity finite element (CPFE), we investigate the evolution of intragranular lattice rotations and slip activity during monotonic and cyclic loading in a high performance, polycrystalline face centered cubic material. The CPFE employs a quasi-3D model microstructure, which is a highly resolved mirror representation of the experimental in-situ test sample. In agreement, the measurements and calculations reveal that most grains, regardless of their size and lattice orientation, develop intragranular lattice rotation gradients that span the grain. For a small cluster of grains on the deformed material, we perform HR-DIC analysis of slip lines to demonstrate agreement in the active slip systems and changes in this local slip activity across the individual grains. The combined analysis reveals that deforming grains are divided into sub-granular regions of uniform lattice rotation and these regions are most often associated with only one or two active slip systems. The gradient lines that divide them correspond to changes in the predominant slip system. The model is used to examine the evolution of intragranular lattice rotation in a single fully reversed tension-compression cycle. The calculations indicate that intragranular gradients intensify during the reverse loading path as nearest neighboring regions appear to shed lattice rotation, increasing the lattice rotation in some regions, while shutting down rotation in neighboring regions. These findings provide insight into the irreversible changes that develop within deforming grains at the scale of the grain, particularly the heterogeneous development of intragranular lattice rotation in early stages of deformation, which could serve as precursors to localization.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2022.117627</doi><orcidid>https://orcid.org/0000-0002-3776-6945</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2022-03, Vol.226 (C), p.117627, Article 117627
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1976785
source Elsevier ScienceDirect Journals
subjects Acoustics
Automatic
Biomechanics
Chemical Sciences
Crystal plasticity
Electric power
Electromagnetism
ENGINEERING
Engineering Sciences
Fluid mechanics
Grain boundaries
High-Resolution digital image correlation
Material chemistry
Materials and structures in mechanics
MATERIALS SCIENCE
Mathematical Physics
Mechanics
Microstructure
Physics
Polymers
Quantum Physics
Reactive fluid environment
Superalloys
Thermics
Vibrations
title Development of grain-scale slip activity and lattice rotation fields in Inconel 718
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20grain-scale%20slip%20activity%20and%20lattice%20rotation%20fields%20in%20Inconel%20718&rft.jtitle=Acta%20materialia&rft.au=Hestroffer,%20Jonathan%20M.&rft.aucorp=Univ.%20of%20California,%20Santa%20Barbara,%20CA%20(United%20States)&rft.date=2022-03-01&rft.volume=226&rft.issue=C&rft.spage=117627&rft.pages=117627-&rft.artnum=117627&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2022.117627&rft_dat=%3Celsevier_osti_%3ES1359645422000118%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645422000118&rfr_iscdi=true