Genetic analysis of electroactive biofilms
Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c -cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to...
Gespeichert in:
Veröffentlicht in: | International microbiology 2021-11, Vol.24 (4), p.631-648 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 648 |
---|---|
container_issue | 4 |
container_start_page | 631 |
container_title | International microbiology |
container_volume | 24 |
creator | Cologgi, Dena L. Otwell, Anne E. Speers, Allison M. Rotondo, John A. Reguera, Gemma |
description | Geobacter
biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and
c
-cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of
Geobacter sulfurreducens
PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of
Geobacter
biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems. |
doi_str_mv | 10.1007/s10123-021-00176-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622303278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7d72c021abc4afd582104f90af93fcbc2e9016b46cee2f2ebe5ca8892e2fe2323</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhYnRWK3-AQ9mozcTdIAtuxxNo9WkiRc9E5YOus12qbA12X8v7Va9eQIy33vzeIRcMLhlAMVdZMC4oMAZBWCFpP0BOWGSlZQpmBymOxOKygLUiJzGuNxBJRyTkRAKCpXDCbmZYYtdbTPTmqaPdcy8y7BB2wVvbFd_YVbV3tXNKp6RI2eaiOf7c0zeHh9ep090_jJ7nt7Pqc2Bd7RYFNymTKayuXGLSckZ5E6BcUo4W1mOCpiscmkRueNY4cSaslQ8vZALLsbkavD1sat1tHWH9sP6tk2hNFOFlHILXQ_QOvjPDcZOL_0mpD9EzSXnAgQvykTxgbLBxxjQ6XWoVyb0moHedqiHDnXKq3f16D6JLvfWm2qFi1_JT2kJEAMQ06h9x_C3-x_bb_vJe7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622303278</pqid></control><display><type>article</type><title>Genetic analysis of electroactive biofilms</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cologgi, Dena L. ; Otwell, Anne E. ; Speers, Allison M. ; Rotondo, John A. ; Reguera, Gemma</creator><creatorcontrib>Cologgi, Dena L. ; Otwell, Anne E. ; Speers, Allison M. ; Rotondo, John A. ; Reguera, Gemma ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>Geobacter
biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and
c
-cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of
Geobacter sulfurreducens
PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of
Geobacter
biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.</description><identifier>ISSN: 1139-6709</identifier><identifier>EISSN: 1618-1905</identifier><identifier>DOI: 10.1007/s10123-021-00176-y</identifier><identifier>PMID: 33907940</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Appendages ; Applied Microbiology ; Biofilms ; Biomedical and Life Sciences ; Bioremediation ; Biotechnology & Applied Microbiology ; Colonization ; Contaminants ; Cytochromes ; Developmental stages ; Electron Transport ; Eukaryotic Microbiology ; Exopolysaccharides ; Fimbriae, Bacterial - genetics ; Genetic analysis ; Genetic screening ; Genetic Testing ; Geobacter ; Geobacter - genetics ; Heavy metals ; High-throughput screening ; Iron oxides ; Life Sciences ; Maturation ; Medical Microbiology ; Microbial Ecology ; Microbiology ; Monolayers ; Optimization ; Original Article ; Oxidation-Reduction ; Pili ; Radioisotopes ; Renewable energy ; Substrates ; Synthesis ; Transposon mutagenesis</subject><ispartof>International microbiology, 2021-11, Vol.24 (4), p.631-648</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><rights>Copyright Spanish Society for Microbiology Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7d72c021abc4afd582104f90af93fcbc2e9016b46cee2f2ebe5ca8892e2fe2323</citedby><cites>FETCH-LOGICAL-c402t-7d72c021abc4afd582104f90af93fcbc2e9016b46cee2f2ebe5ca8892e2fe2323</cites><orcidid>0000-0003-4317-7933 ; 0000000343177933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10123-021-00176-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10123-021-00176-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1976662$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cologgi, Dena L.</creatorcontrib><creatorcontrib>Otwell, Anne E.</creatorcontrib><creatorcontrib>Speers, Allison M.</creatorcontrib><creatorcontrib>Rotondo, John A.</creatorcontrib><creatorcontrib>Reguera, Gemma</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Genetic analysis of electroactive biofilms</title><title>International microbiology</title><addtitle>Int Microbiol</addtitle><addtitle>Int Microbiol</addtitle><description>Geobacter
biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and
c
-cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of
Geobacter sulfurreducens
PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of
Geobacter
biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.</description><subject>Appendages</subject><subject>Applied Microbiology</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Biotechnology & Applied Microbiology</subject><subject>Colonization</subject><subject>Contaminants</subject><subject>Cytochromes</subject><subject>Developmental stages</subject><subject>Electron Transport</subject><subject>Eukaryotic Microbiology</subject><subject>Exopolysaccharides</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Genetic analysis</subject><subject>Genetic screening</subject><subject>Genetic Testing</subject><subject>Geobacter</subject><subject>Geobacter - genetics</subject><subject>Heavy metals</subject><subject>High-throughput screening</subject><subject>Iron oxides</subject><subject>Life Sciences</subject><subject>Maturation</subject><subject>Medical Microbiology</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Monolayers</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Oxidation-Reduction</subject><subject>Pili</subject><subject>Radioisotopes</subject><subject>Renewable energy</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Transposon mutagenesis</subject><issn>1139-6709</issn><issn>1618-1905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFPAyEQhYnRWK3-AQ9mozcTdIAtuxxNo9WkiRc9E5YOus12qbA12X8v7Va9eQIy33vzeIRcMLhlAMVdZMC4oMAZBWCFpP0BOWGSlZQpmBymOxOKygLUiJzGuNxBJRyTkRAKCpXDCbmZYYtdbTPTmqaPdcy8y7BB2wVvbFd_YVbV3tXNKp6RI2eaiOf7c0zeHh9ep090_jJ7nt7Pqc2Bd7RYFNymTKayuXGLSckZ5E6BcUo4W1mOCpiscmkRueNY4cSaslQ8vZALLsbkavD1sat1tHWH9sP6tk2hNFOFlHILXQ_QOvjPDcZOL_0mpD9EzSXnAgQvykTxgbLBxxjQ6XWoVyb0moHedqiHDnXKq3f16D6JLvfWm2qFi1_JT2kJEAMQ06h9x_C3-x_bb_vJe7M</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Cologgi, Dena L.</creator><creator>Otwell, Anne E.</creator><creator>Speers, Allison M.</creator><creator>Rotondo, John A.</creator><creator>Reguera, Gemma</creator><general>Springer International Publishing</general><general>Spanish Society for Microbiology</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4317-7933</orcidid><orcidid>https://orcid.org/0000000343177933</orcidid></search><sort><creationdate>20211101</creationdate><title>Genetic analysis of electroactive biofilms</title><author>Cologgi, Dena L. ; Otwell, Anne E. ; Speers, Allison M. ; Rotondo, John A. ; Reguera, Gemma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7d72c021abc4afd582104f90af93fcbc2e9016b46cee2f2ebe5ca8892e2fe2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Appendages</topic><topic>Applied Microbiology</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Biotechnology & Applied Microbiology</topic><topic>Colonization</topic><topic>Contaminants</topic><topic>Cytochromes</topic><topic>Developmental stages</topic><topic>Electron Transport</topic><topic>Eukaryotic Microbiology</topic><topic>Exopolysaccharides</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Genetic analysis</topic><topic>Genetic screening</topic><topic>Genetic Testing</topic><topic>Geobacter</topic><topic>Geobacter - genetics</topic><topic>Heavy metals</topic><topic>High-throughput screening</topic><topic>Iron oxides</topic><topic>Life Sciences</topic><topic>Maturation</topic><topic>Medical Microbiology</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Monolayers</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Oxidation-Reduction</topic><topic>Pili</topic><topic>Radioisotopes</topic><topic>Renewable energy</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Transposon mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cologgi, Dena L.</creatorcontrib><creatorcontrib>Otwell, Anne E.</creatorcontrib><creatorcontrib>Speers, Allison M.</creatorcontrib><creatorcontrib>Rotondo, John A.</creatorcontrib><creatorcontrib>Reguera, Gemma</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>OSTI.GOV</collection><jtitle>International microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cologgi, Dena L.</au><au>Otwell, Anne E.</au><au>Speers, Allison M.</au><au>Rotondo, John A.</au><au>Reguera, Gemma</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic analysis of electroactive biofilms</atitle><jtitle>International microbiology</jtitle><stitle>Int Microbiol</stitle><addtitle>Int Microbiol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>24</volume><issue>4</issue><spage>631</spage><epage>648</epage><pages>631-648</pages><issn>1139-6709</issn><eissn>1618-1905</eissn><abstract>Geobacter
biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and
c
-cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of
Geobacter sulfurreducens
PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of
Geobacter
biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33907940</pmid><doi>10.1007/s10123-021-00176-y</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4317-7933</orcidid><orcidid>https://orcid.org/0000000343177933</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1139-6709 |
ispartof | International microbiology, 2021-11, Vol.24 (4), p.631-648 |
issn | 1139-6709 1618-1905 |
language | eng |
recordid | cdi_osti_scitechconnect_1976662 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Appendages Applied Microbiology Biofilms Biomedical and Life Sciences Bioremediation Biotechnology & Applied Microbiology Colonization Contaminants Cytochromes Developmental stages Electron Transport Eukaryotic Microbiology Exopolysaccharides Fimbriae, Bacterial - genetics Genetic analysis Genetic screening Genetic Testing Geobacter Geobacter - genetics Heavy metals High-throughput screening Iron oxides Life Sciences Maturation Medical Microbiology Microbial Ecology Microbiology Monolayers Optimization Original Article Oxidation-Reduction Pili Radioisotopes Renewable energy Substrates Synthesis Transposon mutagenesis |
title | Genetic analysis of electroactive biofilms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20analysis%20of%20electroactive%20biofilms&rft.jtitle=International%20microbiology&rft.au=Cologgi,%20Dena%20L.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2021-11-01&rft.volume=24&rft.issue=4&rft.spage=631&rft.epage=648&rft.pages=631-648&rft.issn=1139-6709&rft.eissn=1618-1905&rft_id=info:doi/10.1007/s10123-021-00176-y&rft_dat=%3Cproquest_osti_%3E2622303278%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622303278&rft_id=info:pmid/33907940&rfr_iscdi=true |