Genetic analysis of electroactive biofilms

Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c -cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International microbiology 2021-11, Vol.24 (4), p.631-648
Hauptverfasser: Cologgi, Dena L., Otwell, Anne E., Speers, Allison M., Rotondo, John A., Reguera, Gemma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 4
container_start_page 631
container_title International microbiology
container_volume 24
creator Cologgi, Dena L.
Otwell, Anne E.
Speers, Allison M.
Rotondo, John A.
Reguera, Gemma
description Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c -cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of Geobacter sulfurreducens PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of Geobacter biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.
doi_str_mv 10.1007/s10123-021-00176-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622303278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7d72c021abc4afd582104f90af93fcbc2e9016b46cee2f2ebe5ca8892e2fe2323</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhYnRWK3-AQ9mozcTdIAtuxxNo9WkiRc9E5YOus12qbA12X8v7Va9eQIy33vzeIRcMLhlAMVdZMC4oMAZBWCFpP0BOWGSlZQpmBymOxOKygLUiJzGuNxBJRyTkRAKCpXDCbmZYYtdbTPTmqaPdcy8y7BB2wVvbFd_YVbV3tXNKp6RI2eaiOf7c0zeHh9ep090_jJ7nt7Pqc2Bd7RYFNymTKayuXGLSckZ5E6BcUo4W1mOCpiscmkRueNY4cSaslQ8vZALLsbkavD1sat1tHWH9sP6tk2hNFOFlHILXQ_QOvjPDcZOL_0mpD9EzSXnAgQvykTxgbLBxxjQ6XWoVyb0moHedqiHDnXKq3f16D6JLvfWm2qFi1_JT2kJEAMQ06h9x_C3-x_bb_vJe7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622303278</pqid></control><display><type>article</type><title>Genetic analysis of electroactive biofilms</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cologgi, Dena L. ; Otwell, Anne E. ; Speers, Allison M. ; Rotondo, John A. ; Reguera, Gemma</creator><creatorcontrib>Cologgi, Dena L. ; Otwell, Anne E. ; Speers, Allison M. ; Rotondo, John A. ; Reguera, Gemma ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c -cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (&gt;20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of Geobacter sulfurreducens PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of Geobacter biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.</description><identifier>ISSN: 1139-6709</identifier><identifier>EISSN: 1618-1905</identifier><identifier>DOI: 10.1007/s10123-021-00176-y</identifier><identifier>PMID: 33907940</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Appendages ; Applied Microbiology ; Biofilms ; Biomedical and Life Sciences ; Bioremediation ; Biotechnology &amp; Applied Microbiology ; Colonization ; Contaminants ; Cytochromes ; Developmental stages ; Electron Transport ; Eukaryotic Microbiology ; Exopolysaccharides ; Fimbriae, Bacterial - genetics ; Genetic analysis ; Genetic screening ; Genetic Testing ; Geobacter ; Geobacter - genetics ; Heavy metals ; High-throughput screening ; Iron oxides ; Life Sciences ; Maturation ; Medical Microbiology ; Microbial Ecology ; Microbiology ; Monolayers ; Optimization ; Original Article ; Oxidation-Reduction ; Pili ; Radioisotopes ; Renewable energy ; Substrates ; Synthesis ; Transposon mutagenesis</subject><ispartof>International microbiology, 2021-11, Vol.24 (4), p.631-648</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><rights>Copyright Spanish Society for Microbiology Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7d72c021abc4afd582104f90af93fcbc2e9016b46cee2f2ebe5ca8892e2fe2323</citedby><cites>FETCH-LOGICAL-c402t-7d72c021abc4afd582104f90af93fcbc2e9016b46cee2f2ebe5ca8892e2fe2323</cites><orcidid>0000-0003-4317-7933 ; 0000000343177933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10123-021-00176-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10123-021-00176-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1976662$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cologgi, Dena L.</creatorcontrib><creatorcontrib>Otwell, Anne E.</creatorcontrib><creatorcontrib>Speers, Allison M.</creatorcontrib><creatorcontrib>Rotondo, John A.</creatorcontrib><creatorcontrib>Reguera, Gemma</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Genetic analysis of electroactive biofilms</title><title>International microbiology</title><addtitle>Int Microbiol</addtitle><addtitle>Int Microbiol</addtitle><description>Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c -cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (&gt;20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of Geobacter sulfurreducens PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of Geobacter biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.</description><subject>Appendages</subject><subject>Applied Microbiology</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Colonization</subject><subject>Contaminants</subject><subject>Cytochromes</subject><subject>Developmental stages</subject><subject>Electron Transport</subject><subject>Eukaryotic Microbiology</subject><subject>Exopolysaccharides</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Genetic analysis</subject><subject>Genetic screening</subject><subject>Genetic Testing</subject><subject>Geobacter</subject><subject>Geobacter - genetics</subject><subject>Heavy metals</subject><subject>High-throughput screening</subject><subject>Iron oxides</subject><subject>Life Sciences</subject><subject>Maturation</subject><subject>Medical Microbiology</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Monolayers</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Oxidation-Reduction</subject><subject>Pili</subject><subject>Radioisotopes</subject><subject>Renewable energy</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Transposon mutagenesis</subject><issn>1139-6709</issn><issn>1618-1905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFPAyEQhYnRWK3-AQ9mozcTdIAtuxxNo9WkiRc9E5YOus12qbA12X8v7Va9eQIy33vzeIRcMLhlAMVdZMC4oMAZBWCFpP0BOWGSlZQpmBymOxOKygLUiJzGuNxBJRyTkRAKCpXDCbmZYYtdbTPTmqaPdcy8y7BB2wVvbFd_YVbV3tXNKp6RI2eaiOf7c0zeHh9ep090_jJ7nt7Pqc2Bd7RYFNymTKayuXGLSckZ5E6BcUo4W1mOCpiscmkRueNY4cSaslQ8vZALLsbkavD1sat1tHWH9sP6tk2hNFOFlHILXQ_QOvjPDcZOL_0mpD9EzSXnAgQvykTxgbLBxxjQ6XWoVyb0moHedqiHDnXKq3f16D6JLvfWm2qFi1_JT2kJEAMQ06h9x_C3-x_bb_vJe7M</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Cologgi, Dena L.</creator><creator>Otwell, Anne E.</creator><creator>Speers, Allison M.</creator><creator>Rotondo, John A.</creator><creator>Reguera, Gemma</creator><general>Springer International Publishing</general><general>Spanish Society for Microbiology</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4317-7933</orcidid><orcidid>https://orcid.org/0000000343177933</orcidid></search><sort><creationdate>20211101</creationdate><title>Genetic analysis of electroactive biofilms</title><author>Cologgi, Dena L. ; Otwell, Anne E. ; Speers, Allison M. ; Rotondo, John A. ; Reguera, Gemma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7d72c021abc4afd582104f90af93fcbc2e9016b46cee2f2ebe5ca8892e2fe2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Appendages</topic><topic>Applied Microbiology</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Colonization</topic><topic>Contaminants</topic><topic>Cytochromes</topic><topic>Developmental stages</topic><topic>Electron Transport</topic><topic>Eukaryotic Microbiology</topic><topic>Exopolysaccharides</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Genetic analysis</topic><topic>Genetic screening</topic><topic>Genetic Testing</topic><topic>Geobacter</topic><topic>Geobacter - genetics</topic><topic>Heavy metals</topic><topic>High-throughput screening</topic><topic>Iron oxides</topic><topic>Life Sciences</topic><topic>Maturation</topic><topic>Medical Microbiology</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Monolayers</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Oxidation-Reduction</topic><topic>Pili</topic><topic>Radioisotopes</topic><topic>Renewable energy</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Transposon mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cologgi, Dena L.</creatorcontrib><creatorcontrib>Otwell, Anne E.</creatorcontrib><creatorcontrib>Speers, Allison M.</creatorcontrib><creatorcontrib>Rotondo, John A.</creatorcontrib><creatorcontrib>Reguera, Gemma</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>OSTI.GOV</collection><jtitle>International microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cologgi, Dena L.</au><au>Otwell, Anne E.</au><au>Speers, Allison M.</au><au>Rotondo, John A.</au><au>Reguera, Gemma</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic analysis of electroactive biofilms</atitle><jtitle>International microbiology</jtitle><stitle>Int Microbiol</stitle><addtitle>Int Microbiol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>24</volume><issue>4</issue><spage>631</spage><epage>648</epage><pages>631-648</pages><issn>1139-6709</issn><eissn>1618-1905</eissn><abstract>Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c -cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (&gt;20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of Geobacter sulfurreducens PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of Geobacter biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33907940</pmid><doi>10.1007/s10123-021-00176-y</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4317-7933</orcidid><orcidid>https://orcid.org/0000000343177933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1139-6709
ispartof International microbiology, 2021-11, Vol.24 (4), p.631-648
issn 1139-6709
1618-1905
language eng
recordid cdi_osti_scitechconnect_1976662
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Appendages
Applied Microbiology
Biofilms
Biomedical and Life Sciences
Bioremediation
Biotechnology & Applied Microbiology
Colonization
Contaminants
Cytochromes
Developmental stages
Electron Transport
Eukaryotic Microbiology
Exopolysaccharides
Fimbriae, Bacterial - genetics
Genetic analysis
Genetic screening
Genetic Testing
Geobacter
Geobacter - genetics
Heavy metals
High-throughput screening
Iron oxides
Life Sciences
Maturation
Medical Microbiology
Microbial Ecology
Microbiology
Monolayers
Optimization
Original Article
Oxidation-Reduction
Pili
Radioisotopes
Renewable energy
Substrates
Synthesis
Transposon mutagenesis
title Genetic analysis of electroactive biofilms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20analysis%20of%20electroactive%20biofilms&rft.jtitle=International%20microbiology&rft.au=Cologgi,%20Dena%20L.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2021-11-01&rft.volume=24&rft.issue=4&rft.spage=631&rft.epage=648&rft.pages=631-648&rft.issn=1139-6709&rft.eissn=1618-1905&rft_id=info:doi/10.1007/s10123-021-00176-y&rft_dat=%3Cproquest_osti_%3E2622303278%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622303278&rft_id=info:pmid/33907940&rfr_iscdi=true