Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data
Hurricane Maria, a Category 4 storm, snapped and uprooted canopy trees, removed large branches, and defoliated vegetation across Puerto Rico. The magnitude of forest damages and the rates and mechanisms of forest recovery following Maria provide important benchmarks for understanding the ecology of...
Gespeichert in:
Veröffentlicht in: | Ecosystems (New York) 2022-06, Vol.25 (4), p.892-910 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 910 |
---|---|
container_issue | 4 |
container_start_page | 892 |
container_title | Ecosystems (New York) |
container_volume | 25 |
creator | Leitold, Veronika Morton, Douglas C. Martinuzzi, Sebastián Paynter, Ian Keller, Michael Uriarte, María Keller, Michael Ferraz, António Cook, Bruce D. Corp, Lawrence A Gonzalez, Grizelle |
description | Hurricane Maria, a Category 4 storm, snapped and uprooted canopy trees, removed large branches, and defoliated vegetation across Puerto Rico. The magnitude of forest damages and the rates and mechanisms of forest recovery following Maria provide important benchmarks for understanding the ecology of extreme events. We used airborne Lidar data acquired before (2017) and after Maria (2018, 2020) to quantify landscape-scale changes in forest structure along a 439-ha elevational gradient (100–800 m) in the Luquillo Experimental Forest. Damages from Maria were widespread, with 73% of the study area losing ≥ 1 m in canopy height (mean = −7.1 m). Taller forests at lower elevations suffered more damage than shorter forests above 600 m. Yet only 13.5% of the study area had canopy heights ≤ 2 m in 2018, a typical threshold for forest gaps, highlighting the importance of damaged trees and advanced regeneration on post-storm forest structure. Heterogeneous patterns of regrowth and recruitment yielded shorter and more open forests by 2020. Nearly 45% of forests experienced initial height loss > 1 m (2017–2018) followed by rapid height gain > 1 m (2018–2020), whereas 21.6% of forests with initial height losses showed little or no height gain, and 17.8% of forests exhibited no height changes larger than ± 1 m in either period. Canopy layers |
doi_str_mv | 10.1007/s10021-021-00688-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706381812</galeid><sourcerecordid>A706381812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-82c3b87d042f515966ed835249b5b33522faaf155c87ec241895dc37a8953ea63</originalsourceid><addsrcrecordid>eNp9UU1rGzEQXUoLSdP-gdCDaM-b6nNXewxu0wRsCiE5i7F21la6K7mS3MT_vrK3kFsRoxlm3ns8ZqrqktErRmn7NZWfs_oUtNG61m-qcyaFqmnDu7enmtedlvSsep_SE6VMaSnPq5eHCPaX8xuSt0juIWMi4HuyQrsF79KUSBjIAnzYHcg3mGCDp_k92vAH44HchHEMz0eB232MzoJHsoLogDymY3e1H7PLOO1ChJEsXQ-x6GT4UL0bYEz48V--qB5vvj8sbuvlzx93i-tlbaWiudbcirVueyr5oJjqmgZ7LRSX3VqtRSn4ADAwpaxu0XLJdKd6K1ooWSA04qL6POuGlJ1JtnixWxu8R5sN69qmUaqAvsygXQy_95iyeQr76Isvw5tWtIzqThbU1YzawIjG-SHksrzyepxckcTBlf51SxuhmWa8EPhMsDGkFHEwu-gmiAfDqDnezcx3M6c43s3oQhIzKRWw32B89fJf1qeZ5SGB8TkW52VecFxIKf4CyO2h3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673710894</pqid></control><display><type>article</type><title>Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data</title><source>Springer Nature - Complete Springer Journals</source><source>NASA Technical Reports Server</source><creator>Leitold, Veronika ; Morton, Douglas C. ; Martinuzzi, Sebastián ; Paynter, Ian ; Keller, Michael ; Uriarte, María ; Keller, Michael ; Ferraz, António ; Cook, Bruce D. ; Corp, Lawrence A ; Gonzalez, Grizelle</creator><creatorcontrib>Leitold, Veronika ; Morton, Douglas C. ; Martinuzzi, Sebastián ; Paynter, Ian ; Keller, Michael ; Uriarte, María ; Keller, Michael ; Ferraz, António ; Cook, Bruce D. ; Corp, Lawrence A ; Gonzalez, Grizelle ; NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States) ; USDA Forest Service, Savannah River, New Ellenton, SC (United States)</creatorcontrib><description>Hurricane Maria, a Category 4 storm, snapped and uprooted canopy trees, removed large branches, and defoliated vegetation across Puerto Rico. The magnitude of forest damages and the rates and mechanisms of forest recovery following Maria provide important benchmarks for understanding the ecology of extreme events. We used airborne Lidar data acquired before (2017) and after Maria (2018, 2020) to quantify landscape-scale changes in forest structure along a 439-ha elevational gradient (100–800 m) in the Luquillo Experimental Forest. Damages from Maria were widespread, with 73% of the study area losing ≥ 1 m in canopy height (mean = −7.1 m). Taller forests at lower elevations suffered more damage than shorter forests above 600 m. Yet only 13.5% of the study area had canopy heights ≤ 2 m in 2018, a typical threshold for forest gaps, highlighting the importance of damaged trees and advanced regeneration on post-storm forest structure. Heterogeneous patterns of regrowth and recruitment yielded shorter and more open forests by 2020. Nearly 45% of forests experienced initial height loss > 1 m (2017–2018) followed by rapid height gain > 1 m (2018–2020), whereas 21.6% of forests with initial height losses showed little or no height gain, and 17.8% of forests exhibited no height changes larger than ± 1 m in either period. Canopy layers < 10 m tall accounted for most increases in canopy height and fractional cover between 2018 and 2020, with gains split evenly between height growth and lateral crown expansion by surviving individuals. These findings benchmark rates of gap formation, crown expansion, and canopy closure following hurricane damage and highlight the diversity of ecosystem impacts from heterogeneous spatial patterns and vertical stratification of forest regrowth following a major disturbance event.</description><identifier>ISSN: 1432-9840</identifier><identifier>EISSN: 1435-0629</identifier><identifier>DOI: 10.1007/s10021-021-00688-8</identifier><language>eng</language><publisher>Goddard Space Flight Center: Springer</publisher><subject>Benchmarks ; Biomedical and Life Sciences ; Branches ; Canopies ; Canopy gaps ; Data acquisition ; Earth Resources And Remote Sensing ; Ecology ; Ecosystems ; Environmental impact ; Environmental Management ; Environmental Sciences & Ecology ; Forests ; Geoecology/Natural Processes ; Herbivores ; Hurricanes ; Hydrology/Water Resources ; Impact damage ; Lidar ; Life Sciences ; Meteorology And Climatology ; Natural disaster damage ; Optical radar ; Plant Sciences ; Regrowth ; Remote sensing ; Storm damage ; Stratification ; Trees ; Vertical distribution ; Zoology</subject><ispartof>Ecosystems (New York), 2022-06, Vol.25 (4), p.892-910</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-82c3b87d042f515966ed835249b5b33522faaf155c87ec241895dc37a8953ea63</citedby><cites>FETCH-LOGICAL-c450t-82c3b87d042f515966ed835249b5b33522faaf155c87ec241895dc37a8953ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10021-021-00688-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10021-021-00688-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,796,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1976655$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leitold, Veronika</creatorcontrib><creatorcontrib>Morton, Douglas C.</creatorcontrib><creatorcontrib>Martinuzzi, Sebastián</creatorcontrib><creatorcontrib>Paynter, Ian</creatorcontrib><creatorcontrib>Keller, Michael</creatorcontrib><creatorcontrib>Uriarte, María</creatorcontrib><creatorcontrib>Keller, Michael</creatorcontrib><creatorcontrib>Ferraz, António</creatorcontrib><creatorcontrib>Cook, Bruce D.</creatorcontrib><creatorcontrib>Corp, Lawrence A</creatorcontrib><creatorcontrib>Gonzalez, Grizelle</creatorcontrib><creatorcontrib>NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)</creatorcontrib><creatorcontrib>USDA Forest Service, Savannah River, New Ellenton, SC (United States)</creatorcontrib><title>Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data</title><title>Ecosystems (New York)</title><addtitle>Ecosystems</addtitle><description>Hurricane Maria, a Category 4 storm, snapped and uprooted canopy trees, removed large branches, and defoliated vegetation across Puerto Rico. The magnitude of forest damages and the rates and mechanisms of forest recovery following Maria provide important benchmarks for understanding the ecology of extreme events. We used airborne Lidar data acquired before (2017) and after Maria (2018, 2020) to quantify landscape-scale changes in forest structure along a 439-ha elevational gradient (100–800 m) in the Luquillo Experimental Forest. Damages from Maria were widespread, with 73% of the study area losing ≥ 1 m in canopy height (mean = −7.1 m). Taller forests at lower elevations suffered more damage than shorter forests above 600 m. Yet only 13.5% of the study area had canopy heights ≤ 2 m in 2018, a typical threshold for forest gaps, highlighting the importance of damaged trees and advanced regeneration on post-storm forest structure. Heterogeneous patterns of regrowth and recruitment yielded shorter and more open forests by 2020. Nearly 45% of forests experienced initial height loss > 1 m (2017–2018) followed by rapid height gain > 1 m (2018–2020), whereas 21.6% of forests with initial height losses showed little or no height gain, and 17.8% of forests exhibited no height changes larger than ± 1 m in either period. Canopy layers < 10 m tall accounted for most increases in canopy height and fractional cover between 2018 and 2020, with gains split evenly between height growth and lateral crown expansion by surviving individuals. These findings benchmark rates of gap formation, crown expansion, and canopy closure following hurricane damage and highlight the diversity of ecosystem impacts from heterogeneous spatial patterns and vertical stratification of forest regrowth following a major disturbance event.</description><subject>Benchmarks</subject><subject>Biomedical and Life Sciences</subject><subject>Branches</subject><subject>Canopies</subject><subject>Canopy gaps</subject><subject>Data acquisition</subject><subject>Earth Resources And Remote Sensing</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Environmental impact</subject><subject>Environmental Management</subject><subject>Environmental Sciences & Ecology</subject><subject>Forests</subject><subject>Geoecology/Natural Processes</subject><subject>Herbivores</subject><subject>Hurricanes</subject><subject>Hydrology/Water Resources</subject><subject>Impact damage</subject><subject>Lidar</subject><subject>Life Sciences</subject><subject>Meteorology And Climatology</subject><subject>Natural disaster damage</subject><subject>Optical radar</subject><subject>Plant Sciences</subject><subject>Regrowth</subject><subject>Remote sensing</subject><subject>Storm damage</subject><subject>Stratification</subject><subject>Trees</subject><subject>Vertical distribution</subject><subject>Zoology</subject><issn>1432-9840</issn><issn>1435-0629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UU1rGzEQXUoLSdP-gdCDaM-b6nNXewxu0wRsCiE5i7F21la6K7mS3MT_vrK3kFsRoxlm3ns8ZqrqktErRmn7NZWfs_oUtNG61m-qcyaFqmnDu7enmtedlvSsep_SE6VMaSnPq5eHCPaX8xuSt0juIWMi4HuyQrsF79KUSBjIAnzYHcg3mGCDp_k92vAH44HchHEMz0eB232MzoJHsoLogDymY3e1H7PLOO1ChJEsXQ-x6GT4UL0bYEz48V--qB5vvj8sbuvlzx93i-tlbaWiudbcirVueyr5oJjqmgZ7LRSX3VqtRSn4ADAwpaxu0XLJdKd6K1ooWSA04qL6POuGlJ1JtnixWxu8R5sN69qmUaqAvsygXQy_95iyeQr76Isvw5tWtIzqThbU1YzawIjG-SHksrzyepxckcTBlf51SxuhmWa8EPhMsDGkFHEwu-gmiAfDqDnezcx3M6c43s3oQhIzKRWw32B89fJf1qeZ5SGB8TkW52VecFxIKf4CyO2h3A</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Leitold, Veronika</creator><creator>Morton, Douglas C.</creator><creator>Martinuzzi, Sebastián</creator><creator>Paynter, Ian</creator><creator>Keller, Michael</creator><creator>Uriarte, María</creator><creator>Keller, Michael</creator><creator>Ferraz, António</creator><creator>Cook, Bruce D.</creator><creator>Corp, Lawrence A</creator><creator>Gonzalez, Grizelle</creator><general>Springer</general><general>Springer US</general><general>Springer Nature B.V</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20220601</creationdate><title>Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data</title><author>Leitold, Veronika ; Morton, Douglas C. ; Martinuzzi, Sebastián ; Paynter, Ian ; Keller, Michael ; Uriarte, María ; Keller, Michael ; Ferraz, António ; Cook, Bruce D. ; Corp, Lawrence A ; Gonzalez, Grizelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-82c3b87d042f515966ed835249b5b33522faaf155c87ec241895dc37a8953ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Benchmarks</topic><topic>Biomedical and Life Sciences</topic><topic>Branches</topic><topic>Canopies</topic><topic>Canopy gaps</topic><topic>Data acquisition</topic><topic>Earth Resources And Remote Sensing</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Environmental impact</topic><topic>Environmental Management</topic><topic>Environmental Sciences & Ecology</topic><topic>Forests</topic><topic>Geoecology/Natural Processes</topic><topic>Herbivores</topic><topic>Hurricanes</topic><topic>Hydrology/Water Resources</topic><topic>Impact damage</topic><topic>Lidar</topic><topic>Life Sciences</topic><topic>Meteorology And Climatology</topic><topic>Natural disaster damage</topic><topic>Optical radar</topic><topic>Plant Sciences</topic><topic>Regrowth</topic><topic>Remote sensing</topic><topic>Storm damage</topic><topic>Stratification</topic><topic>Trees</topic><topic>Vertical distribution</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitold, Veronika</creatorcontrib><creatorcontrib>Morton, Douglas C.</creatorcontrib><creatorcontrib>Martinuzzi, Sebastián</creatorcontrib><creatorcontrib>Paynter, Ian</creatorcontrib><creatorcontrib>Keller, Michael</creatorcontrib><creatorcontrib>Uriarte, María</creatorcontrib><creatorcontrib>Keller, Michael</creatorcontrib><creatorcontrib>Ferraz, António</creatorcontrib><creatorcontrib>Cook, Bruce D.</creatorcontrib><creatorcontrib>Corp, Lawrence A</creatorcontrib><creatorcontrib>Gonzalez, Grizelle</creatorcontrib><creatorcontrib>NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)</creatorcontrib><creatorcontrib>USDA Forest Service, Savannah River, New Ellenton, SC (United States)</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Ecosystems (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leitold, Veronika</au><au>Morton, Douglas C.</au><au>Martinuzzi, Sebastián</au><au>Paynter, Ian</au><au>Keller, Michael</au><au>Uriarte, María</au><au>Keller, Michael</au><au>Ferraz, António</au><au>Cook, Bruce D.</au><au>Corp, Lawrence A</au><au>Gonzalez, Grizelle</au><aucorp>NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)</aucorp><aucorp>USDA Forest Service, Savannah River, New Ellenton, SC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data</atitle><jtitle>Ecosystems (New York)</jtitle><stitle>Ecosystems</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>25</volume><issue>4</issue><spage>892</spage><epage>910</epage><pages>892-910</pages><issn>1432-9840</issn><eissn>1435-0629</eissn><abstract>Hurricane Maria, a Category 4 storm, snapped and uprooted canopy trees, removed large branches, and defoliated vegetation across Puerto Rico. The magnitude of forest damages and the rates and mechanisms of forest recovery following Maria provide important benchmarks for understanding the ecology of extreme events. We used airborne Lidar data acquired before (2017) and after Maria (2018, 2020) to quantify landscape-scale changes in forest structure along a 439-ha elevational gradient (100–800 m) in the Luquillo Experimental Forest. Damages from Maria were widespread, with 73% of the study area losing ≥ 1 m in canopy height (mean = −7.1 m). Taller forests at lower elevations suffered more damage than shorter forests above 600 m. Yet only 13.5% of the study area had canopy heights ≤ 2 m in 2018, a typical threshold for forest gaps, highlighting the importance of damaged trees and advanced regeneration on post-storm forest structure. Heterogeneous patterns of regrowth and recruitment yielded shorter and more open forests by 2020. Nearly 45% of forests experienced initial height loss > 1 m (2017–2018) followed by rapid height gain > 1 m (2018–2020), whereas 21.6% of forests with initial height losses showed little or no height gain, and 17.8% of forests exhibited no height changes larger than ± 1 m in either period. Canopy layers < 10 m tall accounted for most increases in canopy height and fractional cover between 2018 and 2020, with gains split evenly between height growth and lateral crown expansion by surviving individuals. These findings benchmark rates of gap formation, crown expansion, and canopy closure following hurricane damage and highlight the diversity of ecosystem impacts from heterogeneous spatial patterns and vertical stratification of forest regrowth following a major disturbance event.</abstract><cop>Goddard Space Flight Center</cop><pub>Springer</pub><doi>10.1007/s10021-021-00688-8</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-9840 |
ispartof | Ecosystems (New York), 2022-06, Vol.25 (4), p.892-910 |
issn | 1432-9840 1435-0629 |
language | eng |
recordid | cdi_osti_scitechconnect_1976655 |
source | Springer Nature - Complete Springer Journals; NASA Technical Reports Server |
subjects | Benchmarks Biomedical and Life Sciences Branches Canopies Canopy gaps Data acquisition Earth Resources And Remote Sensing Ecology Ecosystems Environmental impact Environmental Management Environmental Sciences & Ecology Forests Geoecology/Natural Processes Herbivores Hurricanes Hydrology/Water Resources Impact damage Lidar Life Sciences Meteorology And Climatology Natural disaster damage Optical radar Plant Sciences Regrowth Remote sensing Storm damage Stratification Trees Vertical distribution Zoology |
title | Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20Rates%20and%20Mechanisms%20of%20Canopy%20Damage%20and%20Recovery%20Following%20Hurricane%20Maria%20Using%20Multitemporal%20Lidar%20Data&rft.jtitle=Ecosystems%20(New%20York)&rft.au=Leitold,%20Veronika&rft.aucorp=NASA%20Goddard%20Space%20Flight%20Center%20(GSFC),%20Greenbelt,%20MD%20(United%20States)&rft.date=2022-06-01&rft.volume=25&rft.issue=4&rft.spage=892&rft.epage=910&rft.pages=892-910&rft.issn=1432-9840&rft.eissn=1435-0629&rft_id=info:doi/10.1007/s10021-021-00688-8&rft_dat=%3Cgale_osti_%3EA706381812%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673710894&rft_id=info:pmid/&rft_galeid=A706381812&rfr_iscdi=true |