Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries

In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2022-03, Vol.26 (3), p.709-718
Hauptverfasser: Yersak, Thomas A., Hao, Fang, Kang, Chansoon, Salvador, James R., Zhang, Qinglin, Malabet, Hernando Jesus Gonzalez, Cai, Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 3
container_start_page 709
container_title Journal of solid state electrochemistry
container_volume 26
creator Yersak, Thomas A.
Hao, Fang
Kang, Chansoon
Salvador, James R.
Zhang, Qinglin
Malabet, Hernando Jesus Gonzalez
Cai, Mei
description In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi 0.85 Co 0.10 Mn 0.05 O 2 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 were studied in combination with either glassy Li 7 P 3 S 11 , glassy Li 3 PS 4 , or β-Li 3 PS 4 solid-state electrolytes. Cathode composites composed of LiNi 0.6 Co 0.2 Mn 0.2 O 2 and Li 3 PS 4 maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi 0.6 Co 0.2 Mn 0.2 O 2 ’s resistance to microcracking and the inherent stability of Li 3 PS 4 ’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators.
doi_str_mv 10.1007/s10008-021-05104-8
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627989994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b81cd807cb14b9b21e99e37aebfce8f79e1740dc576be01082ebead8423f6d663</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhlcVlRpS_gAnq5xdbO_GH0cU0Q8ptJdytmzvLDHarIPHUZV_0J-Nm0WCE5eZOTzPaEZv01xy9pUzpq6xVqYpE5yyFWcd1R-aBe_aljIl9dlpFlR3Wn9qzhEfGeNKcrZo_q3ThGmMvSsxTSQNJKTdPmEsQIIr29QDkr-xbMmv9R1xU0_wMA6xB3KyKBZXSRghlJzGY6m0P5JtKmSfATFOD2RImbhxpG-FTSQ7KG4k3pUCOQJ-bj4ObkS4eOnL5v7b7Z_1D7r5_f3n-mZDQ9vJQr3moddMBc87b7zgYAy0yoEfAuhBGeCqY31YKemBcaYFeHC97kQ7yF7Kdtl8mfcmLNFiqI-GbUjTVD-w3CgpV6JCVzO0z-npAFjsYzrkqd5lhRTKaGNMVykxUyEnxAyD3ee4c_loObP_Y7FzLLbGYk-xWF2ldpawwtMD5NfV71jPiaaSbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627989994</pqid></control><display><type>article</type><title>Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yersak, Thomas A. ; Hao, Fang ; Kang, Chansoon ; Salvador, James R. ; Zhang, Qinglin ; Malabet, Hernando Jesus Gonzalez ; Cai, Mei</creator><creatorcontrib>Yersak, Thomas A. ; Hao, Fang ; Kang, Chansoon ; Salvador, James R. ; Zhang, Qinglin ; Malabet, Hernando Jesus Gonzalez ; Cai, Mei ; General Motors LLC, Detroit, MI (United States)</creatorcontrib><description>In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi 0.85 Co 0.10 Mn 0.05 O 2 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 were studied in combination with either glassy Li 7 P 3 S 11 , glassy Li 3 PS 4 , or β-Li 3 PS 4 solid-state electrolytes. Cathode composites composed of LiNi 0.6 Co 0.2 Mn 0.2 O 2 and Li 3 PS 4 maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi 0.6 Co 0.2 Mn 0.2 O 2 ’s resistance to microcracking and the inherent stability of Li 3 PS 4 ’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-021-05104-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Condensed Matter Physics ; Consolidation ; Crack initiation ; Electrochemistry ; Electrolytes ; Energy Storage ; Flux density ; Fracture mechanics ; Glass fiber reinforced plastics ; Glass transition temperature ; Hot pressing ; Microcracks ; Molten salt electrolytes ; Original Paper ; Physical Chemistry ; Porosity ; Room temperature ; S glass ; Separators ; Solid electrolytes ; Solid state ; Stacks</subject><ispartof>Journal of solid state electrochemistry, 2022-03, Vol.26 (3), p.709-718</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b81cd807cb14b9b21e99e37aebfce8f79e1740dc576be01082ebead8423f6d663</citedby><cites>FETCH-LOGICAL-c346t-b81cd807cb14b9b21e99e37aebfce8f79e1740dc576be01082ebead8423f6d663</cites><orcidid>0000-0001-8275-7960 ; 0000000182757960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-021-05104-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-021-05104-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1976652$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yersak, Thomas A.</creatorcontrib><creatorcontrib>Hao, Fang</creatorcontrib><creatorcontrib>Kang, Chansoon</creatorcontrib><creatorcontrib>Salvador, James R.</creatorcontrib><creatorcontrib>Zhang, Qinglin</creatorcontrib><creatorcontrib>Malabet, Hernando Jesus Gonzalez</creatorcontrib><creatorcontrib>Cai, Mei</creatorcontrib><creatorcontrib>General Motors LLC, Detroit, MI (United States)</creatorcontrib><title>Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi 0.85 Co 0.10 Mn 0.05 O 2 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 were studied in combination with either glassy Li 7 P 3 S 11 , glassy Li 3 PS 4 , or β-Li 3 PS 4 solid-state electrolytes. Cathode composites composed of LiNi 0.6 Co 0.2 Mn 0.2 O 2 and Li 3 PS 4 maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi 0.6 Co 0.2 Mn 0.2 O 2 ’s resistance to microcracking and the inherent stability of Li 3 PS 4 ’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators.</description><subject>Analytical Chemistry</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Consolidation</subject><subject>Crack initiation</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Flux density</subject><subject>Fracture mechanics</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass transition temperature</subject><subject>Hot pressing</subject><subject>Microcracks</subject><subject>Molten salt electrolytes</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Porosity</subject><subject>Room temperature</subject><subject>S glass</subject><subject>Separators</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Stacks</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQhlcVlRpS_gAnq5xdbO_GH0cU0Q8ptJdytmzvLDHarIPHUZV_0J-Nm0WCE5eZOTzPaEZv01xy9pUzpq6xVqYpE5yyFWcd1R-aBe_aljIl9dlpFlR3Wn9qzhEfGeNKcrZo_q3ThGmMvSsxTSQNJKTdPmEsQIIr29QDkr-xbMmv9R1xU0_wMA6xB3KyKBZXSRghlJzGY6m0P5JtKmSfATFOD2RImbhxpG-FTSQ7KG4k3pUCOQJ-bj4ObkS4eOnL5v7b7Z_1D7r5_f3n-mZDQ9vJQr3moddMBc87b7zgYAy0yoEfAuhBGeCqY31YKemBcaYFeHC97kQ7yF7Kdtl8mfcmLNFiqI-GbUjTVD-w3CgpV6JCVzO0z-npAFjsYzrkqd5lhRTKaGNMVykxUyEnxAyD3ee4c_loObP_Y7FzLLbGYk-xWF2ldpawwtMD5NfV71jPiaaSbw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Yersak, Thomas A.</creator><creator>Hao, Fang</creator><creator>Kang, Chansoon</creator><creator>Salvador, James R.</creator><creator>Zhang, Qinglin</creator><creator>Malabet, Hernando Jesus Gonzalez</creator><creator>Cai, Mei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8275-7960</orcidid><orcidid>https://orcid.org/0000000182757960</orcidid></search><sort><creationdate>20220301</creationdate><title>Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries</title><author>Yersak, Thomas A. ; Hao, Fang ; Kang, Chansoon ; Salvador, James R. ; Zhang, Qinglin ; Malabet, Hernando Jesus Gonzalez ; Cai, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b81cd807cb14b9b21e99e37aebfce8f79e1740dc576be01082ebead8423f6d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Consolidation</topic><topic>Crack initiation</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Flux density</topic><topic>Fracture mechanics</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass transition temperature</topic><topic>Hot pressing</topic><topic>Microcracks</topic><topic>Molten salt electrolytes</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Porosity</topic><topic>Room temperature</topic><topic>S glass</topic><topic>Separators</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Stacks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yersak, Thomas A.</creatorcontrib><creatorcontrib>Hao, Fang</creatorcontrib><creatorcontrib>Kang, Chansoon</creatorcontrib><creatorcontrib>Salvador, James R.</creatorcontrib><creatorcontrib>Zhang, Qinglin</creatorcontrib><creatorcontrib>Malabet, Hernando Jesus Gonzalez</creatorcontrib><creatorcontrib>Cai, Mei</creatorcontrib><creatorcontrib>General Motors LLC, Detroit, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yersak, Thomas A.</au><au>Hao, Fang</au><au>Kang, Chansoon</au><au>Salvador, James R.</au><au>Zhang, Qinglin</au><au>Malabet, Hernando Jesus Gonzalez</au><au>Cai, Mei</au><aucorp>General Motors LLC, Detroit, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>709</spage><epage>718</epage><pages>709-718</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi 0.85 Co 0.10 Mn 0.05 O 2 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 were studied in combination with either glassy Li 7 P 3 S 11 , glassy Li 3 PS 4 , or β-Li 3 PS 4 solid-state electrolytes. Cathode composites composed of LiNi 0.6 Co 0.2 Mn 0.2 O 2 and Li 3 PS 4 maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi 0.6 Co 0.2 Mn 0.2 O 2 ’s resistance to microcracking and the inherent stability of Li 3 PS 4 ’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-021-05104-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8275-7960</orcidid><orcidid>https://orcid.org/0000000182757960</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2022-03, Vol.26 (3), p.709-718
issn 1432-8488
1433-0768
language eng
recordid cdi_osti_scitechconnect_1976652
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Cathodes
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Composite materials
Condensed Matter Physics
Consolidation
Crack initiation
Electrochemistry
Electrolytes
Energy Storage
Flux density
Fracture mechanics
Glass fiber reinforced plastics
Glass transition temperature
Hot pressing
Microcracks
Molten salt electrolytes
Original Paper
Physical Chemistry
Porosity
Room temperature
S glass
Separators
Solid electrolytes
Solid state
Stacks
title Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consolidation%20of%20composite%20cathodes%20with%20NCM%20and%20sulfide%20solid-state%20electrolytes%20by%20hot%20pressing%20for%20all-solid-state%20Li%20metal%20batteries&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Yersak,%20Thomas%20A.&rft.aucorp=General%20Motors%20LLC,%20Detroit,%20MI%20(United%20States)&rft.date=2022-03-01&rft.volume=26&rft.issue=3&rft.spage=709&rft.epage=718&rft.pages=709-718&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-021-05104-8&rft_dat=%3Cproquest_osti_%3E2627989994%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627989994&rft_id=info:pmid/&rfr_iscdi=true