Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries
In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pre...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2022-03, Vol.26 (3), p.709-718 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 718 |
---|---|
container_issue | 3 |
container_start_page | 709 |
container_title | Journal of solid state electrochemistry |
container_volume | 26 |
creator | Yersak, Thomas A. Hao, Fang Kang, Chansoon Salvador, James R. Zhang, Qinglin Malabet, Hernando Jesus Gonzalez Cai, Mei |
description | In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi
0.85
Co
0.10
Mn
0.05
O
2
and LiNi
0.6
Co
0.2
Mn
0.2
O
2
were studied in combination with either glassy Li
7
P
3
S
11
, glassy Li
3
PS
4
, or β-Li
3
PS
4
solid-state electrolytes. Cathode composites composed of LiNi
0.6
Co
0.2
Mn
0.2
O
2
and Li
3
PS
4
maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi
0.6
Co
0.2
Mn
0.2
O
2
’s resistance to microcracking and the inherent stability of Li
3
PS
4
’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators. |
doi_str_mv | 10.1007/s10008-021-05104-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627989994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b81cd807cb14b9b21e99e37aebfce8f79e1740dc576be01082ebead8423f6d663</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhlcVlRpS_gAnq5xdbO_GH0cU0Q8ptJdytmzvLDHarIPHUZV_0J-Nm0WCE5eZOTzPaEZv01xy9pUzpq6xVqYpE5yyFWcd1R-aBe_aljIl9dlpFlR3Wn9qzhEfGeNKcrZo_q3ThGmMvSsxTSQNJKTdPmEsQIIr29QDkr-xbMmv9R1xU0_wMA6xB3KyKBZXSRghlJzGY6m0P5JtKmSfATFOD2RImbhxpG-FTSQ7KG4k3pUCOQJ-bj4ObkS4eOnL5v7b7Z_1D7r5_f3n-mZDQ9vJQr3moddMBc87b7zgYAy0yoEfAuhBGeCqY31YKemBcaYFeHC97kQ7yF7Kdtl8mfcmLNFiqI-GbUjTVD-w3CgpV6JCVzO0z-npAFjsYzrkqd5lhRTKaGNMVykxUyEnxAyD3ee4c_loObP_Y7FzLLbGYk-xWF2ldpawwtMD5NfV71jPiaaSbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627989994</pqid></control><display><type>article</type><title>Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yersak, Thomas A. ; Hao, Fang ; Kang, Chansoon ; Salvador, James R. ; Zhang, Qinglin ; Malabet, Hernando Jesus Gonzalez ; Cai, Mei</creator><creatorcontrib>Yersak, Thomas A. ; Hao, Fang ; Kang, Chansoon ; Salvador, James R. ; Zhang, Qinglin ; Malabet, Hernando Jesus Gonzalez ; Cai, Mei ; General Motors LLC, Detroit, MI (United States)</creatorcontrib><description>In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi
0.85
Co
0.10
Mn
0.05
O
2
and LiNi
0.6
Co
0.2
Mn
0.2
O
2
were studied in combination with either glassy Li
7
P
3
S
11
, glassy Li
3
PS
4
, or β-Li
3
PS
4
solid-state electrolytes. Cathode composites composed of LiNi
0.6
Co
0.2
Mn
0.2
O
2
and Li
3
PS
4
maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi
0.6
Co
0.2
Mn
0.2
O
2
’s resistance to microcracking and the inherent stability of Li
3
PS
4
’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-021-05104-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Condensed Matter Physics ; Consolidation ; Crack initiation ; Electrochemistry ; Electrolytes ; Energy Storage ; Flux density ; Fracture mechanics ; Glass fiber reinforced plastics ; Glass transition temperature ; Hot pressing ; Microcracks ; Molten salt electrolytes ; Original Paper ; Physical Chemistry ; Porosity ; Room temperature ; S glass ; Separators ; Solid electrolytes ; Solid state ; Stacks</subject><ispartof>Journal of solid state electrochemistry, 2022-03, Vol.26 (3), p.709-718</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b81cd807cb14b9b21e99e37aebfce8f79e1740dc576be01082ebead8423f6d663</citedby><cites>FETCH-LOGICAL-c346t-b81cd807cb14b9b21e99e37aebfce8f79e1740dc576be01082ebead8423f6d663</cites><orcidid>0000-0001-8275-7960 ; 0000000182757960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-021-05104-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-021-05104-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1976652$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yersak, Thomas A.</creatorcontrib><creatorcontrib>Hao, Fang</creatorcontrib><creatorcontrib>Kang, Chansoon</creatorcontrib><creatorcontrib>Salvador, James R.</creatorcontrib><creatorcontrib>Zhang, Qinglin</creatorcontrib><creatorcontrib>Malabet, Hernando Jesus Gonzalez</creatorcontrib><creatorcontrib>Cai, Mei</creatorcontrib><creatorcontrib>General Motors LLC, Detroit, MI (United States)</creatorcontrib><title>Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi
0.85
Co
0.10
Mn
0.05
O
2
and LiNi
0.6
Co
0.2
Mn
0.2
O
2
were studied in combination with either glassy Li
7
P
3
S
11
, glassy Li
3
PS
4
, or β-Li
3
PS
4
solid-state electrolytes. Cathode composites composed of LiNi
0.6
Co
0.2
Mn
0.2
O
2
and Li
3
PS
4
maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi
0.6
Co
0.2
Mn
0.2
O
2
’s resistance to microcracking and the inherent stability of Li
3
PS
4
’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators.</description><subject>Analytical Chemistry</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Consolidation</subject><subject>Crack initiation</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Flux density</subject><subject>Fracture mechanics</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass transition temperature</subject><subject>Hot pressing</subject><subject>Microcracks</subject><subject>Molten salt electrolytes</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Porosity</subject><subject>Room temperature</subject><subject>S glass</subject><subject>Separators</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Stacks</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQhlcVlRpS_gAnq5xdbO_GH0cU0Q8ptJdytmzvLDHarIPHUZV_0J-Nm0WCE5eZOTzPaEZv01xy9pUzpq6xVqYpE5yyFWcd1R-aBe_aljIl9dlpFlR3Wn9qzhEfGeNKcrZo_q3ThGmMvSsxTSQNJKTdPmEsQIIr29QDkr-xbMmv9R1xU0_wMA6xB3KyKBZXSRghlJzGY6m0P5JtKmSfATFOD2RImbhxpG-FTSQ7KG4k3pUCOQJ-bj4ObkS4eOnL5v7b7Z_1D7r5_f3n-mZDQ9vJQr3moddMBc87b7zgYAy0yoEfAuhBGeCqY31YKemBcaYFeHC97kQ7yF7Kdtl8mfcmLNFiqI-GbUjTVD-w3CgpV6JCVzO0z-npAFjsYzrkqd5lhRTKaGNMVykxUyEnxAyD3ee4c_loObP_Y7FzLLbGYk-xWF2ldpawwtMD5NfV71jPiaaSbw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Yersak, Thomas A.</creator><creator>Hao, Fang</creator><creator>Kang, Chansoon</creator><creator>Salvador, James R.</creator><creator>Zhang, Qinglin</creator><creator>Malabet, Hernando Jesus Gonzalez</creator><creator>Cai, Mei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8275-7960</orcidid><orcidid>https://orcid.org/0000000182757960</orcidid></search><sort><creationdate>20220301</creationdate><title>Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries</title><author>Yersak, Thomas A. ; Hao, Fang ; Kang, Chansoon ; Salvador, James R. ; Zhang, Qinglin ; Malabet, Hernando Jesus Gonzalez ; Cai, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b81cd807cb14b9b21e99e37aebfce8f79e1740dc576be01082ebead8423f6d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Consolidation</topic><topic>Crack initiation</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Flux density</topic><topic>Fracture mechanics</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass transition temperature</topic><topic>Hot pressing</topic><topic>Microcracks</topic><topic>Molten salt electrolytes</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Porosity</topic><topic>Room temperature</topic><topic>S glass</topic><topic>Separators</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Stacks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yersak, Thomas A.</creatorcontrib><creatorcontrib>Hao, Fang</creatorcontrib><creatorcontrib>Kang, Chansoon</creatorcontrib><creatorcontrib>Salvador, James R.</creatorcontrib><creatorcontrib>Zhang, Qinglin</creatorcontrib><creatorcontrib>Malabet, Hernando Jesus Gonzalez</creatorcontrib><creatorcontrib>Cai, Mei</creatorcontrib><creatorcontrib>General Motors LLC, Detroit, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yersak, Thomas A.</au><au>Hao, Fang</au><au>Kang, Chansoon</au><au>Salvador, James R.</au><au>Zhang, Qinglin</au><au>Malabet, Hernando Jesus Gonzalez</au><au>Cai, Mei</au><aucorp>General Motors LLC, Detroit, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>709</spage><epage>718</epage><pages>709-718</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi
0.85
Co
0.10
Mn
0.05
O
2
and LiNi
0.6
Co
0.2
Mn
0.2
O
2
were studied in combination with either glassy Li
7
P
3
S
11
, glassy Li
3
PS
4
, or β-Li
3
PS
4
solid-state electrolytes. Cathode composites composed of LiNi
0.6
Co
0.2
Mn
0.2
O
2
and Li
3
PS
4
maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi
0.6
Co
0.2
Mn
0.2
O
2
’s resistance to microcracking and the inherent stability of Li
3
PS
4
’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-021-05104-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8275-7960</orcidid><orcidid>https://orcid.org/0000000182757960</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2022-03, Vol.26 (3), p.709-718 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_osti_scitechconnect_1976652 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Cathodes Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Composite materials Condensed Matter Physics Consolidation Crack initiation Electrochemistry Electrolytes Energy Storage Flux density Fracture mechanics Glass fiber reinforced plastics Glass transition temperature Hot pressing Microcracks Molten salt electrolytes Original Paper Physical Chemistry Porosity Room temperature S glass Separators Solid electrolytes Solid state Stacks |
title | Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consolidation%20of%20composite%20cathodes%20with%20NCM%20and%20sulfide%20solid-state%20electrolytes%20by%20hot%20pressing%20for%20all-solid-state%20Li%20metal%20batteries&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Yersak,%20Thomas%20A.&rft.aucorp=General%20Motors%20LLC,%20Detroit,%20MI%20(United%20States)&rft.date=2022-03-01&rft.volume=26&rft.issue=3&rft.spage=709&rft.epage=718&rft.pages=709-718&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-021-05104-8&rft_dat=%3Cproquest_osti_%3E2627989994%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627989994&rft_id=info:pmid/&rfr_iscdi=true |