Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks
Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-06, Vol.34 (23), p.e2201410-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2201410 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Guo, Dong Shinde, Digambar B. Shin, Woochul Abou‐Hamad, Edy Emwas, Abdul‐Hamid Lai, Zhiping Manthiram, Arumugam |
description | Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐mediated single‐Li+‐conductive covalent organic framework (COF) is presented, which represents a new category of quality solid‐state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge‐carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid‐state pouch cells are demonstrated.
A high‐performance solid‐state electrolyte by engineering of the molecular channels in lithiated covalent organic frameworks (COFs) is presented. In situ electrolyte mediation in the COF increases charge‐carrier concentration, eliminates interfacial defects, and activates the motion of Li+ ions in a directional manner. The COF‐based electrolyte demonstrates reliable electrochemical cyclability in pouch cells. |
doi_str_mv | 10.1002/adma.202201410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674196191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4000-f019362915ab495bdeea0da6dbcd3cb8a755112e7050b0fcf0cebb27b14e305f3</originalsourceid><addsrcrecordid>eNqF0b1uFDEUBWALgcgm0FKiETQ0s7n2jGficll2A1KiFIHa-OcOOHjGwfYSbZdH4Bl5kni1IUhpqFz489H1PYS8ojCnAOxY2VHNGTAGtKXwhMwoZ7RuQfCnZAai4bXo2pMDcpjSFQCIDrrn5KDhTcNEDzPydR28VdpjdRm8s39uf19mlbF6r3LG6DBVq2l3bSu9rVYeTY7Bbws4R-tUdmGq3FQtwy_lccrVRfymJmeqdVQj3oT4I70gzwblE768P4_Il_Xq8_JjfXZx-mm5OKtNW-aqB6Ci6ZigXOlWcG0RFVjVWW1sY_SJ6jmnlGEPHDQMZgCDWrNe0xYb4ENzRN7sc0PKTibjMprvJkxTGVlS0XeMNgW926PrGH5uMGU5umTQezVh2CTJurYtuxSsL_TtI3oVNnEqXyiqb6noqKBFzffKxJBSxEFeRzequJUU5K4guStIPhRUHry-j93oEe0D_9tIAWIPbpzH7X_i5OLD-eJf-B0CsZzJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674196191</pqid></control><display><type>article</type><title>Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Dong ; Shinde, Digambar B. ; Shin, Woochul ; Abou‐Hamad, Edy ; Emwas, Abdul‐Hamid ; Lai, Zhiping ; Manthiram, Arumugam</creator><creatorcontrib>Guo, Dong ; Shinde, Digambar B. ; Shin, Woochul ; Abou‐Hamad, Edy ; Emwas, Abdul‐Hamid ; Lai, Zhiping ; Manthiram, Arumugam ; Univ. of Texas, Austin, TX (United States)</creatorcontrib><description>Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐mediated single‐Li+‐conductive covalent organic framework (COF) is presented, which represents a new category of quality solid‐state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge‐carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid‐state pouch cells are demonstrated.
A high‐performance solid‐state electrolyte by engineering of the molecular channels in lithiated covalent organic frameworks (COFs) is presented. In situ electrolyte mediation in the COF increases charge‐carrier concentration, eliminates interfacial defects, and activates the motion of Li+ ions in a directional manner. The COF‐based electrolyte demonstrates reliable electrochemical cyclability in pouch cells.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202201410</identifier><identifier>PMID: 35332970</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; Cements ; Chemistry ; Conductors ; covalent organic frameworks ; Crystal defects ; Current carriers ; Electrolytes ; Electrolytic cells ; flexible electrolytes ; foldable batteries ; Lithium ions ; lithium‐metal batteries ; Materials Science ; Membranes ; Molecular chains ; Molten salt electrolytes ; Physics ; Room temperature ; Science & Technology - Other Topics ; Solid electrolytes ; Solidification ; solid‐state batteries</subject><ispartof>Advanced materials (Weinheim), 2022-06, Vol.34 (23), p.e2201410-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4000-f019362915ab495bdeea0da6dbcd3cb8a755112e7050b0fcf0cebb27b14e305f3</citedby><cites>FETCH-LOGICAL-c4000-f019362915ab495bdeea0da6dbcd3cb8a755112e7050b0fcf0cebb27b14e305f3</cites><orcidid>0000-0003-0237-9563 ; 0000000302379563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202201410$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202201410$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35332970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1976213$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Shinde, Digambar B.</creatorcontrib><creatorcontrib>Shin, Woochul</creatorcontrib><creatorcontrib>Abou‐Hamad, Edy</creatorcontrib><creatorcontrib>Emwas, Abdul‐Hamid</creatorcontrib><creatorcontrib>Lai, Zhiping</creatorcontrib><creatorcontrib>Manthiram, Arumugam</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><title>Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐mediated single‐Li+‐conductive covalent organic framework (COF) is presented, which represents a new category of quality solid‐state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge‐carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid‐state pouch cells are demonstrated.
A high‐performance solid‐state electrolyte by engineering of the molecular channels in lithiated covalent organic frameworks (COFs) is presented. In situ electrolyte mediation in the COF increases charge‐carrier concentration, eliminates interfacial defects, and activates the motion of Li+ ions in a directional manner. The COF‐based electrolyte demonstrates reliable electrochemical cyclability in pouch cells.</description><subject>Carrier density</subject><subject>Cements</subject><subject>Chemistry</subject><subject>Conductors</subject><subject>covalent organic frameworks</subject><subject>Crystal defects</subject><subject>Current carriers</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>flexible electrolytes</subject><subject>foldable batteries</subject><subject>Lithium ions</subject><subject>lithium‐metal batteries</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Molecular chains</subject><subject>Molten salt electrolytes</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Science & Technology - Other Topics</subject><subject>Solid electrolytes</subject><subject>Solidification</subject><subject>solid‐state batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0b1uFDEUBWALgcgm0FKiETQ0s7n2jGficll2A1KiFIHa-OcOOHjGwfYSbZdH4Bl5kni1IUhpqFz489H1PYS8ojCnAOxY2VHNGTAGtKXwhMwoZ7RuQfCnZAai4bXo2pMDcpjSFQCIDrrn5KDhTcNEDzPydR28VdpjdRm8s39uf19mlbF6r3LG6DBVq2l3bSu9rVYeTY7Bbws4R-tUdmGq3FQtwy_lccrVRfymJmeqdVQj3oT4I70gzwblE768P4_Il_Xq8_JjfXZx-mm5OKtNW-aqB6Ci6ZigXOlWcG0RFVjVWW1sY_SJ6jmnlGEPHDQMZgCDWrNe0xYb4ENzRN7sc0PKTibjMprvJkxTGVlS0XeMNgW926PrGH5uMGU5umTQezVh2CTJurYtuxSsL_TtI3oVNnEqXyiqb6noqKBFzffKxJBSxEFeRzequJUU5K4guStIPhRUHry-j93oEe0D_9tIAWIPbpzH7X_i5OLD-eJf-B0CsZzJ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Guo, Dong</creator><creator>Shinde, Digambar B.</creator><creator>Shin, Woochul</creator><creator>Abou‐Hamad, Edy</creator><creator>Emwas, Abdul‐Hamid</creator><creator>Lai, Zhiping</creator><creator>Manthiram, Arumugam</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0237-9563</orcidid><orcidid>https://orcid.org/0000000302379563</orcidid></search><sort><creationdate>20220601</creationdate><title>Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks</title><author>Guo, Dong ; Shinde, Digambar B. ; Shin, Woochul ; Abou‐Hamad, Edy ; Emwas, Abdul‐Hamid ; Lai, Zhiping ; Manthiram, Arumugam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4000-f019362915ab495bdeea0da6dbcd3cb8a755112e7050b0fcf0cebb27b14e305f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier density</topic><topic>Cements</topic><topic>Chemistry</topic><topic>Conductors</topic><topic>covalent organic frameworks</topic><topic>Crystal defects</topic><topic>Current carriers</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>flexible electrolytes</topic><topic>foldable batteries</topic><topic>Lithium ions</topic><topic>lithium‐metal batteries</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Molecular chains</topic><topic>Molten salt electrolytes</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Science & Technology - Other Topics</topic><topic>Solid electrolytes</topic><topic>Solidification</topic><topic>solid‐state batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Shinde, Digambar B.</creatorcontrib><creatorcontrib>Shin, Woochul</creatorcontrib><creatorcontrib>Abou‐Hamad, Edy</creatorcontrib><creatorcontrib>Emwas, Abdul‐Hamid</creatorcontrib><creatorcontrib>Lai, Zhiping</creatorcontrib><creatorcontrib>Manthiram, Arumugam</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Dong</au><au>Shinde, Digambar B.</au><au>Shin, Woochul</au><au>Abou‐Hamad, Edy</au><au>Emwas, Abdul‐Hamid</au><au>Lai, Zhiping</au><au>Manthiram, Arumugam</au><aucorp>Univ. of Texas, Austin, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>34</volume><issue>23</issue><spage>e2201410</spage><epage>n/a</epage><pages>e2201410-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐mediated single‐Li+‐conductive covalent organic framework (COF) is presented, which represents a new category of quality solid‐state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge‐carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid‐state pouch cells are demonstrated.
A high‐performance solid‐state electrolyte by engineering of the molecular channels in lithiated covalent organic frameworks (COFs) is presented. In situ electrolyte mediation in the COF increases charge‐carrier concentration, eliminates interfacial defects, and activates the motion of Li+ ions in a directional manner. The COF‐based electrolyte demonstrates reliable electrochemical cyclability in pouch cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35332970</pmid><doi>10.1002/adma.202201410</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0237-9563</orcidid><orcidid>https://orcid.org/0000000302379563</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-06, Vol.34 (23), p.e2201410-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1976213 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carrier density Cements Chemistry Conductors covalent organic frameworks Crystal defects Current carriers Electrolytes Electrolytic cells flexible electrolytes foldable batteries Lithium ions lithium‐metal batteries Materials Science Membranes Molecular chains Molten salt electrolytes Physics Room temperature Science & Technology - Other Topics Solid electrolytes Solidification solid‐state batteries |
title | Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foldable%20Solid%E2%80%90State%20Batteries%20Enabled%20by%20Electrolyte%20Mediation%20in%20Covalent%20Organic%20Frameworks&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Guo,%20Dong&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(United%20States)&rft.date=2022-06-01&rft.volume=34&rft.issue=23&rft.spage=e2201410&rft.epage=n/a&rft.pages=e2201410-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202201410&rft_dat=%3Cproquest_osti_%3E2674196191%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674196191&rft_id=info:pmid/35332970&rfr_iscdi=true |