Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks

Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-06, Vol.34 (23), p.e2201410-n/a
Hauptverfasser: Guo, Dong, Shinde, Digambar B., Shin, Woochul, Abou‐Hamad, Edy, Emwas, Abdul‐Hamid, Lai, Zhiping, Manthiram, Arumugam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2201410
container_title Advanced materials (Weinheim)
container_volume 34
creator Guo, Dong
Shinde, Digambar B.
Shin, Woochul
Abou‐Hamad, Edy
Emwas, Abdul‐Hamid
Lai, Zhiping
Manthiram, Arumugam
description Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐mediated single‐Li+‐conductive covalent organic framework (COF) is presented, which represents a new category of quality solid‐state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge‐carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid‐state pouch cells are demonstrated. A high‐performance solid‐state electrolyte by engineering of the molecular channels in lithiated covalent organic frameworks (COFs) is presented. In situ electrolyte mediation in the COF increases charge‐carrier concentration, eliminates interfacial defects, and activates the motion of Li+ ions in a directional manner. The COF‐based electrolyte demonstrates reliable electrochemical cyclability in pouch cells.
doi_str_mv 10.1002/adma.202201410
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674196191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4000-f019362915ab495bdeea0da6dbcd3cb8a755112e7050b0fcf0cebb27b14e305f3</originalsourceid><addsrcrecordid>eNqF0b1uFDEUBWALgcgm0FKiETQ0s7n2jGficll2A1KiFIHa-OcOOHjGwfYSbZdH4Bl5kni1IUhpqFz489H1PYS8ojCnAOxY2VHNGTAGtKXwhMwoZ7RuQfCnZAai4bXo2pMDcpjSFQCIDrrn5KDhTcNEDzPydR28VdpjdRm8s39uf19mlbF6r3LG6DBVq2l3bSu9rVYeTY7Bbws4R-tUdmGq3FQtwy_lccrVRfymJmeqdVQj3oT4I70gzwblE768P4_Il_Xq8_JjfXZx-mm5OKtNW-aqB6Ci6ZigXOlWcG0RFVjVWW1sY_SJ6jmnlGEPHDQMZgCDWrNe0xYb4ENzRN7sc0PKTibjMprvJkxTGVlS0XeMNgW926PrGH5uMGU5umTQezVh2CTJurYtuxSsL_TtI3oVNnEqXyiqb6noqKBFzffKxJBSxEFeRzequJUU5K4guStIPhRUHry-j93oEe0D_9tIAWIPbpzH7X_i5OLD-eJf-B0CsZzJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674196191</pqid></control><display><type>article</type><title>Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Dong ; Shinde, Digambar B. ; Shin, Woochul ; Abou‐Hamad, Edy ; Emwas, Abdul‐Hamid ; Lai, Zhiping ; Manthiram, Arumugam</creator><creatorcontrib>Guo, Dong ; Shinde, Digambar B. ; Shin, Woochul ; Abou‐Hamad, Edy ; Emwas, Abdul‐Hamid ; Lai, Zhiping ; Manthiram, Arumugam ; Univ. of Texas, Austin, TX (United States)</creatorcontrib><description>Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐mediated single‐Li+‐conductive covalent organic framework (COF) is presented, which represents a new category of quality solid‐state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge‐carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid‐state pouch cells are demonstrated. A high‐performance solid‐state electrolyte by engineering of the molecular channels in lithiated covalent organic frameworks (COFs) is presented. In situ electrolyte mediation in the COF increases charge‐carrier concentration, eliminates interfacial defects, and activates the motion of Li+ ions in a directional manner. The COF‐based electrolyte demonstrates reliable electrochemical cyclability in pouch cells.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202201410</identifier><identifier>PMID: 35332970</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; Cements ; Chemistry ; Conductors ; covalent organic frameworks ; Crystal defects ; Current carriers ; Electrolytes ; Electrolytic cells ; flexible electrolytes ; foldable batteries ; Lithium ions ; lithium‐metal batteries ; Materials Science ; Membranes ; Molecular chains ; Molten salt electrolytes ; Physics ; Room temperature ; Science &amp; Technology - Other Topics ; Solid electrolytes ; Solidification ; solid‐state batteries</subject><ispartof>Advanced materials (Weinheim), 2022-06, Vol.34 (23), p.e2201410-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4000-f019362915ab495bdeea0da6dbcd3cb8a755112e7050b0fcf0cebb27b14e305f3</citedby><cites>FETCH-LOGICAL-c4000-f019362915ab495bdeea0da6dbcd3cb8a755112e7050b0fcf0cebb27b14e305f3</cites><orcidid>0000-0003-0237-9563 ; 0000000302379563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202201410$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202201410$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35332970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1976213$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Shinde, Digambar B.</creatorcontrib><creatorcontrib>Shin, Woochul</creatorcontrib><creatorcontrib>Abou‐Hamad, Edy</creatorcontrib><creatorcontrib>Emwas, Abdul‐Hamid</creatorcontrib><creatorcontrib>Lai, Zhiping</creatorcontrib><creatorcontrib>Manthiram, Arumugam</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><title>Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐mediated single‐Li+‐conductive covalent organic framework (COF) is presented, which represents a new category of quality solid‐state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge‐carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid‐state pouch cells are demonstrated. A high‐performance solid‐state electrolyte by engineering of the molecular channels in lithiated covalent organic frameworks (COFs) is presented. In situ electrolyte mediation in the COF increases charge‐carrier concentration, eliminates interfacial defects, and activates the motion of Li+ ions in a directional manner. The COF‐based electrolyte demonstrates reliable electrochemical cyclability in pouch cells.</description><subject>Carrier density</subject><subject>Cements</subject><subject>Chemistry</subject><subject>Conductors</subject><subject>covalent organic frameworks</subject><subject>Crystal defects</subject><subject>Current carriers</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>flexible electrolytes</subject><subject>foldable batteries</subject><subject>Lithium ions</subject><subject>lithium‐metal batteries</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Molecular chains</subject><subject>Molten salt electrolytes</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Solid electrolytes</subject><subject>Solidification</subject><subject>solid‐state batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0b1uFDEUBWALgcgm0FKiETQ0s7n2jGficll2A1KiFIHa-OcOOHjGwfYSbZdH4Bl5kni1IUhpqFz489H1PYS8ojCnAOxY2VHNGTAGtKXwhMwoZ7RuQfCnZAai4bXo2pMDcpjSFQCIDrrn5KDhTcNEDzPydR28VdpjdRm8s39uf19mlbF6r3LG6DBVq2l3bSu9rVYeTY7Bbws4R-tUdmGq3FQtwy_lccrVRfymJmeqdVQj3oT4I70gzwblE768P4_Il_Xq8_JjfXZx-mm5OKtNW-aqB6Ci6ZigXOlWcG0RFVjVWW1sY_SJ6jmnlGEPHDQMZgCDWrNe0xYb4ENzRN7sc0PKTibjMprvJkxTGVlS0XeMNgW926PrGH5uMGU5umTQezVh2CTJurYtuxSsL_TtI3oVNnEqXyiqb6noqKBFzffKxJBSxEFeRzequJUU5K4guStIPhRUHry-j93oEe0D_9tIAWIPbpzH7X_i5OLD-eJf-B0CsZzJ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Guo, Dong</creator><creator>Shinde, Digambar B.</creator><creator>Shin, Woochul</creator><creator>Abou‐Hamad, Edy</creator><creator>Emwas, Abdul‐Hamid</creator><creator>Lai, Zhiping</creator><creator>Manthiram, Arumugam</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0237-9563</orcidid><orcidid>https://orcid.org/0000000302379563</orcidid></search><sort><creationdate>20220601</creationdate><title>Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks</title><author>Guo, Dong ; Shinde, Digambar B. ; Shin, Woochul ; Abou‐Hamad, Edy ; Emwas, Abdul‐Hamid ; Lai, Zhiping ; Manthiram, Arumugam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4000-f019362915ab495bdeea0da6dbcd3cb8a755112e7050b0fcf0cebb27b14e305f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier density</topic><topic>Cements</topic><topic>Chemistry</topic><topic>Conductors</topic><topic>covalent organic frameworks</topic><topic>Crystal defects</topic><topic>Current carriers</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>flexible electrolytes</topic><topic>foldable batteries</topic><topic>Lithium ions</topic><topic>lithium‐metal batteries</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Molecular chains</topic><topic>Molten salt electrolytes</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Solid electrolytes</topic><topic>Solidification</topic><topic>solid‐state batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Shinde, Digambar B.</creatorcontrib><creatorcontrib>Shin, Woochul</creatorcontrib><creatorcontrib>Abou‐Hamad, Edy</creatorcontrib><creatorcontrib>Emwas, Abdul‐Hamid</creatorcontrib><creatorcontrib>Lai, Zhiping</creatorcontrib><creatorcontrib>Manthiram, Arumugam</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Dong</au><au>Shinde, Digambar B.</au><au>Shin, Woochul</au><au>Abou‐Hamad, Edy</au><au>Emwas, Abdul‐Hamid</au><au>Lai, Zhiping</au><au>Manthiram, Arumugam</au><aucorp>Univ. of Texas, Austin, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>34</volume><issue>23</issue><spage>e2201410</spage><epage>n/a</epage><pages>e2201410-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Solid‐state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte‐mediated single‐Li+‐conductive covalent organic framework (COF) is presented, which represents a new category of quality solid‐state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge‐carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid‐state pouch cells are demonstrated. A high‐performance solid‐state electrolyte by engineering of the molecular channels in lithiated covalent organic frameworks (COFs) is presented. In situ electrolyte mediation in the COF increases charge‐carrier concentration, eliminates interfacial defects, and activates the motion of Li+ ions in a directional manner. The COF‐based electrolyte demonstrates reliable electrochemical cyclability in pouch cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35332970</pmid><doi>10.1002/adma.202201410</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0237-9563</orcidid><orcidid>https://orcid.org/0000000302379563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-06, Vol.34 (23), p.e2201410-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1976213
source Wiley Online Library Journals Frontfile Complete
subjects Carrier density
Cements
Chemistry
Conductors
covalent organic frameworks
Crystal defects
Current carriers
Electrolytes
Electrolytic cells
flexible electrolytes
foldable batteries
Lithium ions
lithium‐metal batteries
Materials Science
Membranes
Molecular chains
Molten salt electrolytes
Physics
Room temperature
Science & Technology - Other Topics
Solid electrolytes
Solidification
solid‐state batteries
title Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foldable%20Solid%E2%80%90State%20Batteries%20Enabled%20by%20Electrolyte%20Mediation%20in%20Covalent%20Organic%20Frameworks&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Guo,%20Dong&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(United%20States)&rft.date=2022-06-01&rft.volume=34&rft.issue=23&rft.spage=e2201410&rft.epage=n/a&rft.pages=e2201410-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202201410&rft_dat=%3Cproquest_osti_%3E2674196191%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674196191&rft_id=info:pmid/35332970&rfr_iscdi=true