Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations

•A crystal plasticity with first principles-informed dislocation density hardening is adopted to identify the key microstructural features in formation of strain and stress localizations.•Ensemble machine learning analysis of micromechanical data reveals the hotspots in the vicinity of the grain bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2023-07, Vol.166 (C), p.103646, Article 103646
Hauptverfasser: Eghtesad, Adnan, Luo, Qixiang, Shang, Shun-Li, Lebensohn, Ricardo A., Knezevic, Marko, Liu, Zi-Kui, Beese, Allison M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 103646
container_title International journal of plasticity
container_volume 166
creator Eghtesad, Adnan
Luo, Qixiang
Shang, Shun-Li
Lebensohn, Ricardo A.
Knezevic, Marko
Liu, Zi-Kui
Beese, Allison M.
description •A crystal plasticity with first principles-informed dislocation density hardening is adopted to identify the key microstructural features in formation of strain and stress localizations.•Ensemble machine learning analysis of micromechanical data reveals the hotspots in the vicinity of the grain boundaries, crystals with higher Taylor/Schmid factors, and high intergranular misorientations.•Intergranular misorientations are more responsible in formation of stress hotspots while Schmid factors take the precedence under high accumulated plastic strains.•Grain size becomes important only under combined tension/shear loading and high accumulated plastic strains. The present work uses a full-field crystal plasticity model with a first principles-informed dislocation density (DD) hardening law to identify the key microstructural features correlated with micromechanical fields localization, or hotspots, in polycrystalline Ni. An ensemble learning approach to machine learning interpreted with Shapley additive explanation was implemented to predict nonlinear correlations between microstructural features and micromechanical stress and strain hotspots. Results reveal that regions within the microstructure in the vicinity of grain boundaries, higher Schmid factors, low slip transmissions and high intergranular misorientations, are more prone to being micromechanical hotspots. Additionally, under combined loading and large plastic deformations, slip transmissions take precedence over intergranular misorientations in formation of both strain and stress hotspots. The present work demonstrates a successful integration of physics-based crystal plasticity with DD-based hardening into machine learning models to reveal the microscale features responsible for the formation of local stress and strain hotspots within the grains and near the grain boundaries, as function of applied deformation states, grain morphology/size distribution, and microstructural texture, providing insights into micromechanical damage initiation zones in polycrystalline metals. [Display omitted]
doi_str_mv 10.1016/j.ijplas.2023.103646
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1975309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641923001328</els_id><sourcerecordid>S0749641923001328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-70435b6360d16b2bdfc3ed6c2b3ef92fd445b2fea5eaa787acfdb95782ce7b693</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOK7-Aw_Be49JpzuZvgiy6Crsshc9h3xUnBp60kMqLsx_8ceatvfsIVSoj4e36mXsvRR7KaT-eNrj6TI72veiVy2l9KBfsJ08mKnr5Ti8ZDthhqnTg5xeszdEJyHEeFByx_48uHDEDHwGVzLmXx1k52eIHCPkigmDq7hkviR-xlCWM4Sjyy07c6oFiLjLcf06zPy4VLq0xy8FIobaME_oeESal2dOoxLWa-cdtWooV6oNtaqvGFqBE55_z_966S17ldxM8O453rCfX7_8uP3W3T_efb_9fN8FZabaGTGo0WulRZTa9z6moCDq0HsFaepTHIbR9wncCM6Zg3EhRT-N5tAHMF5P6oZ92LhLE2GpyWhLhiVnCNXKyYxKrE3D1tSOQFQg2UvBsytXK4VdbbAnu9lgVxvsZkMb-7SNQVvgCaGsfMih3aes-Ljg_wF_Abl1mTc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations</title><source>Elsevier ScienceDirect Journals</source><creator>Eghtesad, Adnan ; Luo, Qixiang ; Shang, Shun-Li ; Lebensohn, Ricardo A. ; Knezevic, Marko ; Liu, Zi-Kui ; Beese, Allison M.</creator><creatorcontrib>Eghtesad, Adnan ; Luo, Qixiang ; Shang, Shun-Li ; Lebensohn, Ricardo A. ; Knezevic, Marko ; Liu, Zi-Kui ; Beese, Allison M.</creatorcontrib><description>•A crystal plasticity with first principles-informed dislocation density hardening is adopted to identify the key microstructural features in formation of strain and stress localizations.•Ensemble machine learning analysis of micromechanical data reveals the hotspots in the vicinity of the grain boundaries, crystals with higher Taylor/Schmid factors, and high intergranular misorientations.•Intergranular misorientations are more responsible in formation of stress hotspots while Schmid factors take the precedence under high accumulated plastic strains.•Grain size becomes important only under combined tension/shear loading and high accumulated plastic strains. The present work uses a full-field crystal plasticity model with a first principles-informed dislocation density (DD) hardening law to identify the key microstructural features correlated with micromechanical fields localization, or hotspots, in polycrystalline Ni. An ensemble learning approach to machine learning interpreted with Shapley additive explanation was implemented to predict nonlinear correlations between microstructural features and micromechanical stress and strain hotspots. Results reveal that regions within the microstructure in the vicinity of grain boundaries, higher Schmid factors, low slip transmissions and high intergranular misorientations, are more prone to being micromechanical hotspots. Additionally, under combined loading and large plastic deformations, slip transmissions take precedence over intergranular misorientations in formation of both strain and stress hotspots. The present work demonstrates a successful integration of physics-based crystal plasticity with DD-based hardening into machine learning models to reveal the microscale features responsible for the formation of local stress and strain hotspots within the grains and near the grain boundaries, as function of applied deformation states, grain morphology/size distribution, and microstructural texture, providing insights into micromechanical damage initiation zones in polycrystalline metals. [Display omitted]</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2023.103646</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Crystal plasticity ; Ensemble learning ; Hotspots ; Machine learning ; Microstructure</subject><ispartof>International journal of plasticity, 2023-07, Vol.166 (C), p.103646, Article 103646</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-70435b6360d16b2bdfc3ed6c2b3ef92fd445b2fea5eaa787acfdb95782ce7b693</citedby><cites>FETCH-LOGICAL-c379t-70435b6360d16b2bdfc3ed6c2b3ef92fd445b2fea5eaa787acfdb95782ce7b693</cites><orcidid>0000-0002-8542-5694 ; 0000-0002-7022-3387 ; 0000-0002-3152-9105 ; 0000-0003-3346-3696 ; 0000-0002-6911-3914 ; 0000000270223387 ; 0000000333463696 ; 0000000285425694 ; 0000000269113914 ; 0000000231529105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749641923001328$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1975309$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eghtesad, Adnan</creatorcontrib><creatorcontrib>Luo, Qixiang</creatorcontrib><creatorcontrib>Shang, Shun-Li</creatorcontrib><creatorcontrib>Lebensohn, Ricardo A.</creatorcontrib><creatorcontrib>Knezevic, Marko</creatorcontrib><creatorcontrib>Liu, Zi-Kui</creatorcontrib><creatorcontrib>Beese, Allison M.</creatorcontrib><title>Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations</title><title>International journal of plasticity</title><description>•A crystal plasticity with first principles-informed dislocation density hardening is adopted to identify the key microstructural features in formation of strain and stress localizations.•Ensemble machine learning analysis of micromechanical data reveals the hotspots in the vicinity of the grain boundaries, crystals with higher Taylor/Schmid factors, and high intergranular misorientations.•Intergranular misorientations are more responsible in formation of stress hotspots while Schmid factors take the precedence under high accumulated plastic strains.•Grain size becomes important only under combined tension/shear loading and high accumulated plastic strains. The present work uses a full-field crystal plasticity model with a first principles-informed dislocation density (DD) hardening law to identify the key microstructural features correlated with micromechanical fields localization, or hotspots, in polycrystalline Ni. An ensemble learning approach to machine learning interpreted with Shapley additive explanation was implemented to predict nonlinear correlations between microstructural features and micromechanical stress and strain hotspots. Results reveal that regions within the microstructure in the vicinity of grain boundaries, higher Schmid factors, low slip transmissions and high intergranular misorientations, are more prone to being micromechanical hotspots. Additionally, under combined loading and large plastic deformations, slip transmissions take precedence over intergranular misorientations in formation of both strain and stress hotspots. The present work demonstrates a successful integration of physics-based crystal plasticity with DD-based hardening into machine learning models to reveal the microscale features responsible for the formation of local stress and strain hotspots within the grains and near the grain boundaries, as function of applied deformation states, grain morphology/size distribution, and microstructural texture, providing insights into micromechanical damage initiation zones in polycrystalline metals. [Display omitted]</description><subject>Crystal plasticity</subject><subject>Ensemble learning</subject><subject>Hotspots</subject><subject>Machine learning</subject><subject>Microstructure</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOK7-Aw_Be49JpzuZvgiy6Crsshc9h3xUnBp60kMqLsx_8ceatvfsIVSoj4e36mXsvRR7KaT-eNrj6TI72veiVy2l9KBfsJ08mKnr5Ti8ZDthhqnTg5xeszdEJyHEeFByx_48uHDEDHwGVzLmXx1k52eIHCPkigmDq7hkviR-xlCWM4Sjyy07c6oFiLjLcf06zPy4VLq0xy8FIobaME_oeESal2dOoxLWa-cdtWooV6oNtaqvGFqBE55_z_966S17ldxM8O453rCfX7_8uP3W3T_efb_9fN8FZabaGTGo0WulRZTa9z6moCDq0HsFaepTHIbR9wncCM6Zg3EhRT-N5tAHMF5P6oZ92LhLE2GpyWhLhiVnCNXKyYxKrE3D1tSOQFQg2UvBsytXK4VdbbAnu9lgVxvsZkMb-7SNQVvgCaGsfMih3aes-Ljg_wF_Abl1mTc</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Eghtesad, Adnan</creator><creator>Luo, Qixiang</creator><creator>Shang, Shun-Li</creator><creator>Lebensohn, Ricardo A.</creator><creator>Knezevic, Marko</creator><creator>Liu, Zi-Kui</creator><creator>Beese, Allison M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8542-5694</orcidid><orcidid>https://orcid.org/0000-0002-7022-3387</orcidid><orcidid>https://orcid.org/0000-0002-3152-9105</orcidid><orcidid>https://orcid.org/0000-0003-3346-3696</orcidid><orcidid>https://orcid.org/0000-0002-6911-3914</orcidid><orcidid>https://orcid.org/0000000270223387</orcidid><orcidid>https://orcid.org/0000000333463696</orcidid><orcidid>https://orcid.org/0000000285425694</orcidid><orcidid>https://orcid.org/0000000269113914</orcidid><orcidid>https://orcid.org/0000000231529105</orcidid></search><sort><creationdate>202307</creationdate><title>Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations</title><author>Eghtesad, Adnan ; Luo, Qixiang ; Shang, Shun-Li ; Lebensohn, Ricardo A. ; Knezevic, Marko ; Liu, Zi-Kui ; Beese, Allison M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-70435b6360d16b2bdfc3ed6c2b3ef92fd445b2fea5eaa787acfdb95782ce7b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystal plasticity</topic><topic>Ensemble learning</topic><topic>Hotspots</topic><topic>Machine learning</topic><topic>Microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eghtesad, Adnan</creatorcontrib><creatorcontrib>Luo, Qixiang</creatorcontrib><creatorcontrib>Shang, Shun-Li</creatorcontrib><creatorcontrib>Lebensohn, Ricardo A.</creatorcontrib><creatorcontrib>Knezevic, Marko</creatorcontrib><creatorcontrib>Liu, Zi-Kui</creatorcontrib><creatorcontrib>Beese, Allison M.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eghtesad, Adnan</au><au>Luo, Qixiang</au><au>Shang, Shun-Li</au><au>Lebensohn, Ricardo A.</au><au>Knezevic, Marko</au><au>Liu, Zi-Kui</au><au>Beese, Allison M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations</atitle><jtitle>International journal of plasticity</jtitle><date>2023-07</date><risdate>2023</risdate><volume>166</volume><issue>C</issue><spage>103646</spage><pages>103646-</pages><artnum>103646</artnum><issn>0749-6419</issn><eissn>1879-2154</eissn><abstract>•A crystal plasticity with first principles-informed dislocation density hardening is adopted to identify the key microstructural features in formation of strain and stress localizations.•Ensemble machine learning analysis of micromechanical data reveals the hotspots in the vicinity of the grain boundaries, crystals with higher Taylor/Schmid factors, and high intergranular misorientations.•Intergranular misorientations are more responsible in formation of stress hotspots while Schmid factors take the precedence under high accumulated plastic strains.•Grain size becomes important only under combined tension/shear loading and high accumulated plastic strains. The present work uses a full-field crystal plasticity model with a first principles-informed dislocation density (DD) hardening law to identify the key microstructural features correlated with micromechanical fields localization, or hotspots, in polycrystalline Ni. An ensemble learning approach to machine learning interpreted with Shapley additive explanation was implemented to predict nonlinear correlations between microstructural features and micromechanical stress and strain hotspots. Results reveal that regions within the microstructure in the vicinity of grain boundaries, higher Schmid factors, low slip transmissions and high intergranular misorientations, are more prone to being micromechanical hotspots. Additionally, under combined loading and large plastic deformations, slip transmissions take precedence over intergranular misorientations in formation of both strain and stress hotspots. The present work demonstrates a successful integration of physics-based crystal plasticity with DD-based hardening into machine learning models to reveal the microscale features responsible for the formation of local stress and strain hotspots within the grains and near the grain boundaries, as function of applied deformation states, grain morphology/size distribution, and microstructural texture, providing insights into micromechanical damage initiation zones in polycrystalline metals. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2023.103646</doi><orcidid>https://orcid.org/0000-0002-8542-5694</orcidid><orcidid>https://orcid.org/0000-0002-7022-3387</orcidid><orcidid>https://orcid.org/0000-0002-3152-9105</orcidid><orcidid>https://orcid.org/0000-0003-3346-3696</orcidid><orcidid>https://orcid.org/0000-0002-6911-3914</orcidid><orcidid>https://orcid.org/0000000270223387</orcidid><orcidid>https://orcid.org/0000000333463696</orcidid><orcidid>https://orcid.org/0000000285425694</orcidid><orcidid>https://orcid.org/0000000269113914</orcidid><orcidid>https://orcid.org/0000000231529105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2023-07, Vol.166 (C), p.103646, Article 103646
issn 0749-6419
1879-2154
language eng
recordid cdi_osti_scitechconnect_1975309
source Elsevier ScienceDirect Journals
subjects Crystal plasticity
Ensemble learning
Hotspots
Machine learning
Microstructure
title Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-enabled%20identification%20of%20micromechanical%20stress%20and%20strain%20hotspots%20predicted%20via%20dislocation%20density-based%20crystal%20plasticity%20simulations&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Eghtesad,%20Adnan&rft.date=2023-07&rft.volume=166&rft.issue=C&rft.spage=103646&rft.pages=103646-&rft.artnum=103646&rft.issn=0749-6419&rft.eissn=1879-2154&rft_id=info:doi/10.1016/j.ijplas.2023.103646&rft_dat=%3Celsevier_osti_%3ES0749641923001328%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0749641923001328&rfr_iscdi=true