Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots

Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2022-11, Vol.21 (11), p.1282-1289
Hauptverfasser: Han, Yaoyao, Liang, Wenfei, Lin, Xuyang, Li, Yulu, Sun, Fengke, Zhang, Fan, Sercel, Peter C., Wu, Kaifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1289
container_issue 11
container_start_page 1282
container_title Nature materials
container_volume 21
creator Han, Yaoyao
Liang, Wenfei
Lin, Xuyang
Li, Yulu
Sun, Fengke
Zhang, Fan
Sercel, Peter C.
Wu, Kaifeng
description Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI 3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic ‘fine-structure gap’ that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes. Halide perovskites feature highly dynamic lattices, but their impact on exciton fine structure remains unexplored. Here, the authors show that these lattices lead to a bright-exciton fine structure gap, enabling observation of quantum beats in a non-uniform ensemble.
doi_str_mv 10.1038/s41563-022-01349-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1975284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712845760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ada947604bba83c7534f1870b0ac0b7b68bad0d5f6727bcdb2762dfc185af4273</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_AiCurqF_BU9OKlmleb9iiLL1jQg55DXl2j3WTNpKLf3qwVBQ-eEpLfDDP8i-IIozOMaHsODNcNrRAhFcKUdRXbKvYw403FmgZtf98xJmS32Ad4Rojgum72imEhU3LalsZBCjG54EvnzaidX5b2XbuUH2A9uKzyi_Sm1OHJRutT-TpKn8ZVqaz8-nS-nMO9uqXl2sbwBi8u2R9kQoKDYqeXA9jD73NWPF5dPsxvqsXd9e38YlFpyrtUSSO7PC5iSsmWal5T1uOWI4WkRoqrplXSIFP3DSdcaaMIb4jpNW5r2TPC6aw4nvoGSE5AXsLqJx28tzoJ3PGatCyj0wmtY3gdLSSxcqDtMEhvwwiCcJxZnefI9OQPfQ5j9HmFrChiLepwmxWZlI4BINperKNbyfghMBKblMSUksgpia-UxGYKOhVBxn5p42_rf6o-Ab86liE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730480918</pqid></control><display><type>article</type><title>Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Han, Yaoyao ; Liang, Wenfei ; Lin, Xuyang ; Li, Yulu ; Sun, Fengke ; Zhang, Fan ; Sercel, Peter C. ; Wu, Kaifeng</creator><creatorcontrib>Han, Yaoyao ; Liang, Wenfei ; Lin, Xuyang ; Li, Yulu ; Sun, Fengke ; Zhang, Fan ; Sercel, Peter C. ; Wu, Kaifeng ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI 3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic ‘fine-structure gap’ that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes. Halide perovskites feature highly dynamic lattices, but their impact on exciton fine structure remains unexplored. Here, the authors show that these lattices lead to a bright-exciton fine structure gap, enabling observation of quantum beats in a non-uniform ensemble.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-022-01349-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/624/400/482 ; 639/925/357/1017 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Data processing ; Distortion ; Electrons ; exciton fine structure ; Excitons ; Fine structure ; Helium ; Heterogeneity ; Lattices ; Materials Science ; metal halide perovskite ; nanocrystals ; Nanotechnology ; Optical and Electronic Materials ; Perovskites ; quantum beating ; Quantum dots ; quantum optics ; Quantum phenomena ; Room temperature ; Splitting</subject><ispartof>Nature materials, 2022-11, Vol.21 (11), p.1282-1289</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ada947604bba83c7534f1870b0ac0b7b68bad0d5f6727bcdb2762dfc185af4273</citedby><cites>FETCH-LOGICAL-c379t-ada947604bba83c7534f1870b0ac0b7b68bad0d5f6727bcdb2762dfc185af4273</cites><orcidid>0000-0002-1047-6606 ; 0000-0002-1734-3793 ; 0000000217343793 ; 0000000210476606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-022-01349-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-022-01349-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1975284$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Yaoyao</creatorcontrib><creatorcontrib>Liang, Wenfei</creatorcontrib><creatorcontrib>Lin, Xuyang</creatorcontrib><creatorcontrib>Li, Yulu</creatorcontrib><creatorcontrib>Sun, Fengke</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Sercel, Peter C.</creatorcontrib><creatorcontrib>Wu, Kaifeng</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI 3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic ‘fine-structure gap’ that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes. Halide perovskites feature highly dynamic lattices, but their impact on exciton fine structure remains unexplored. Here, the authors show that these lattices lead to a bright-exciton fine structure gap, enabling observation of quantum beats in a non-uniform ensemble.</description><subject>140/125</subject><subject>639/624/400/482</subject><subject>639/925/357/1017</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Data processing</subject><subject>Distortion</subject><subject>Electrons</subject><subject>exciton fine structure</subject><subject>Excitons</subject><subject>Fine structure</subject><subject>Helium</subject><subject>Heterogeneity</subject><subject>Lattices</subject><subject>Materials Science</subject><subject>metal halide perovskite</subject><subject>nanocrystals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>quantum beating</subject><subject>Quantum dots</subject><subject>quantum optics</subject><subject>Quantum phenomena</subject><subject>Room temperature</subject><subject>Splitting</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90UtLxDAQB_AiCurqF_BU9OKlmleb9iiLL1jQg55DXl2j3WTNpKLf3qwVBQ-eEpLfDDP8i-IIozOMaHsODNcNrRAhFcKUdRXbKvYw403FmgZtf98xJmS32Ad4Rojgum72imEhU3LalsZBCjG54EvnzaidX5b2XbuUH2A9uKzyi_Sm1OHJRutT-TpKn8ZVqaz8-nS-nMO9uqXl2sbwBi8u2R9kQoKDYqeXA9jD73NWPF5dPsxvqsXd9e38YlFpyrtUSSO7PC5iSsmWal5T1uOWI4WkRoqrplXSIFP3DSdcaaMIb4jpNW5r2TPC6aw4nvoGSE5AXsLqJx28tzoJ3PGatCyj0wmtY3gdLSSxcqDtMEhvwwiCcJxZnefI9OQPfQ5j9HmFrChiLepwmxWZlI4BINperKNbyfghMBKblMSUksgpia-UxGYKOhVBxn5p42_rf6o-Ab86liE</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Han, Yaoyao</creator><creator>Liang, Wenfei</creator><creator>Lin, Xuyang</creator><creator>Li, Yulu</creator><creator>Sun, Fengke</creator><creator>Zhang, Fan</creator><creator>Sercel, Peter C.</creator><creator>Wu, Kaifeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1047-6606</orcidid><orcidid>https://orcid.org/0000-0002-1734-3793</orcidid><orcidid>https://orcid.org/0000000217343793</orcidid><orcidid>https://orcid.org/0000000210476606</orcidid></search><sort><creationdate>20221101</creationdate><title>Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots</title><author>Han, Yaoyao ; Liang, Wenfei ; Lin, Xuyang ; Li, Yulu ; Sun, Fengke ; Zhang, Fan ; Sercel, Peter C. ; Wu, Kaifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ada947604bba83c7534f1870b0ac0b7b68bad0d5f6727bcdb2762dfc185af4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/125</topic><topic>639/624/400/482</topic><topic>639/925/357/1017</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Data processing</topic><topic>Distortion</topic><topic>Electrons</topic><topic>exciton fine structure</topic><topic>Excitons</topic><topic>Fine structure</topic><topic>Helium</topic><topic>Heterogeneity</topic><topic>Lattices</topic><topic>Materials Science</topic><topic>metal halide perovskite</topic><topic>nanocrystals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>quantum beating</topic><topic>Quantum dots</topic><topic>quantum optics</topic><topic>Quantum phenomena</topic><topic>Room temperature</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yaoyao</creatorcontrib><creatorcontrib>Liang, Wenfei</creatorcontrib><creatorcontrib>Lin, Xuyang</creatorcontrib><creatorcontrib>Li, Yulu</creatorcontrib><creatorcontrib>Sun, Fengke</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Sercel, Peter C.</creatorcontrib><creatorcontrib>Wu, Kaifeng</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yaoyao</au><au>Liang, Wenfei</au><au>Lin, Xuyang</au><au>Li, Yulu</au><au>Sun, Fengke</au><au>Zhang, Fan</au><au>Sercel, Peter C.</au><au>Wu, Kaifeng</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>21</volume><issue>11</issue><spage>1282</spage><epage>1289</epage><pages>1282-1289</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI 3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic ‘fine-structure gap’ that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes. Halide perovskites feature highly dynamic lattices, but their impact on exciton fine structure remains unexplored. Here, the authors show that these lattices lead to a bright-exciton fine structure gap, enabling observation of quantum beats in a non-uniform ensemble.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-022-01349-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1047-6606</orcidid><orcidid>https://orcid.org/0000-0002-1734-3793</orcidid><orcidid>https://orcid.org/0000000217343793</orcidid><orcidid>https://orcid.org/0000000210476606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2022-11, Vol.21 (11), p.1282-1289
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1975284
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 140/125
639/624/400/482
639/925/357/1017
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Data processing
Distortion
Electrons
exciton fine structure
Excitons
Fine structure
Helium
Heterogeneity
Lattices
Materials Science
metal halide perovskite
nanocrystals
Nanotechnology
Optical and Electronic Materials
Perovskites
quantum beating
Quantum dots
quantum optics
Quantum phenomena
Room temperature
Splitting
title Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20distortion%20inducing%20exciton%20splitting%20and%20coherent%20quantum%20beating%20in%20CsPbI3%20perovskite%20quantum%20dots&rft.jtitle=Nature%20materials&rft.au=Han,%20Yaoyao&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-11-01&rft.volume=21&rft.issue=11&rft.spage=1282&rft.epage=1289&rft.pages=1282-1289&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-022-01349-4&rft_dat=%3Cproquest_osti_%3E2712845760%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730480918&rft_id=info:pmid/&rfr_iscdi=true