Resonant interaction between phonons and PbTe/PbSe (001) misfit dislocation networks

This work aims at a quantitative and mechanistic understanding of the dynamic process of the phonon-dislocation interaction in PbTe/PbSe (001) heterostructures using the Concurrent Atomistic-Continuum (CAC) method as the simulation tool. The misfit dislocation network and the atomic-scale dislocatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2022-09, Vol.237, p.118143, Article 118143
Hauptverfasser: Li, Yang, Zheng, Zexi, Diaz, Adrian, Phillpot, Simon R., McDowell, David L., Chen, Youping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118143
container_title Acta materialia
container_volume 237
creator Li, Yang
Zheng, Zexi
Diaz, Adrian
Phillpot, Simon R.
McDowell, David L.
Chen, Youping
description This work aims at a quantitative and mechanistic understanding of the dynamic process of the phonon-dislocation interaction in PbTe/PbSe (001) heterostructures using the Concurrent Atomistic-Continuum (CAC) method as the simulation tool. The misfit dislocation network and the atomic-scale dislocation core structure obtained in the simulations are found to agree reasonably well with the experimental observations of the PbTe/PbSe (001) interface. Through visualizing the dynamic interaction between phonons and dislocations, as well as quantifying the dislocation vibration amplitude, the phonon energy transmission, and the thermal resistance of the misfit interfaces, this work has illustrated and quantified two mechanisms for phonon-dislocation interaction: (1) phonon scattering by the strain field of dislocations, and (2) phonon scattering by dislocations that vibrate via the local modes of a dislocation network; the latter, leads to resonant phonon-dislocation interaction, which is manifested as local maxima of out-of-phase vibration of the atoms on the two sides of the slip plane, leading to local minima of the energy transmission in the heterostructure that contains one interface. The local vibrational modes are found to be excited only by shear stress induced by transverse phonons. Among various resonant modes, the one with the lowest frequency has the strongest effect. This work has also demonstrated the collective motion of dislocations under ultrafast phonon pulses. In addition, the dynamic properties of the misfit dislocation network localized within one interface are found to be significantly altered by the presence of misfit dislocations at other interfaces, thus further confirming the cooperative dynamic nature of the motion of dislocations and phonons. [Display omitted]
doi_str_mv 10.1016/j.actamat.2022.118143
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1974932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645422005249</els_id><sourcerecordid>S1359645422005249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-41cd5624e78383952501ca31c39e0e873b825e90c202eef2b5b3b93e7dbbff7e3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhQdRsFZ_ghBc6WKmeXYmKxHxBQWL1nVIMndoapuUSVD892ac7l3duzjfufecorgkuCKYzGebStukdzpVFFNaEdIQzo6KCWlqVlIu2HHemZDlnAt-WpzFuMGY0JrjSbF6gxi89gk5n6DPRi54ZCB9A3i0XwcffETat2hpVjBbmndA15m-QTsXO5dQ6-I2WP2H-YyF_jOeFyed3ka4OMxp8fH4sLp_LhevTy_3d4vSci5TyYltxZxyqBvWMCmowMRqRiyTgCE_bxoqQGKbYwF01AjDjGRQt8Z0XQ1sWlyNviEmp6J1CezaBu_BJkVkzSWjWSRGke1DjD10at-7ne5_FMFq6E9t1KE_NfSnxv4ydztykBN8OeiHA-AttK4f_Nvg_nH4BZWrezQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Resonant interaction between phonons and PbTe/PbSe (001) misfit dislocation networks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Yang ; Zheng, Zexi ; Diaz, Adrian ; Phillpot, Simon R. ; McDowell, David L. ; Chen, Youping</creator><creatorcontrib>Li, Yang ; Zheng, Zexi ; Diaz, Adrian ; Phillpot, Simon R. ; McDowell, David L. ; Chen, Youping ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>This work aims at a quantitative and mechanistic understanding of the dynamic process of the phonon-dislocation interaction in PbTe/PbSe (001) heterostructures using the Concurrent Atomistic-Continuum (CAC) method as the simulation tool. The misfit dislocation network and the atomic-scale dislocation core structure obtained in the simulations are found to agree reasonably well with the experimental observations of the PbTe/PbSe (001) interface. Through visualizing the dynamic interaction between phonons and dislocations, as well as quantifying the dislocation vibration amplitude, the phonon energy transmission, and the thermal resistance of the misfit interfaces, this work has illustrated and quantified two mechanisms for phonon-dislocation interaction: (1) phonon scattering by the strain field of dislocations, and (2) phonon scattering by dislocations that vibrate via the local modes of a dislocation network; the latter, leads to resonant phonon-dislocation interaction, which is manifested as local maxima of out-of-phase vibration of the atoms on the two sides of the slip plane, leading to local minima of the energy transmission in the heterostructure that contains one interface. The local vibrational modes are found to be excited only by shear stress induced by transverse phonons. Among various resonant modes, the one with the lowest frequency has the strongest effect. This work has also demonstrated the collective motion of dislocations under ultrafast phonon pulses. In addition, the dynamic properties of the misfit dislocation network localized within one interface are found to be significantly altered by the presence of misfit dislocations at other interfaces, thus further confirming the cooperative dynamic nature of the motion of dislocations and phonons. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2022.118143</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>dislocations ; MATERIALS SCIENCE ; multiscale ; phonons ; resonance ; super-lattices</subject><ispartof>Acta materialia, 2022-09, Vol.237, p.118143, Article 118143</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-41cd5624e78383952501ca31c39e0e873b825e90c202eef2b5b3b93e7dbbff7e3</citedby><cites>FETCH-LOGICAL-c449t-41cd5624e78383952501ca31c39e0e873b825e90c202eef2b5b3b93e7dbbff7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2022.118143$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1974932$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zheng, Zexi</creatorcontrib><creatorcontrib>Diaz, Adrian</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>McDowell, David L.</creatorcontrib><creatorcontrib>Chen, Youping</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Resonant interaction between phonons and PbTe/PbSe (001) misfit dislocation networks</title><title>Acta materialia</title><description>This work aims at a quantitative and mechanistic understanding of the dynamic process of the phonon-dislocation interaction in PbTe/PbSe (001) heterostructures using the Concurrent Atomistic-Continuum (CAC) method as the simulation tool. The misfit dislocation network and the atomic-scale dislocation core structure obtained in the simulations are found to agree reasonably well with the experimental observations of the PbTe/PbSe (001) interface. Through visualizing the dynamic interaction between phonons and dislocations, as well as quantifying the dislocation vibration amplitude, the phonon energy transmission, and the thermal resistance of the misfit interfaces, this work has illustrated and quantified two mechanisms for phonon-dislocation interaction: (1) phonon scattering by the strain field of dislocations, and (2) phonon scattering by dislocations that vibrate via the local modes of a dislocation network; the latter, leads to resonant phonon-dislocation interaction, which is manifested as local maxima of out-of-phase vibration of the atoms on the two sides of the slip plane, leading to local minima of the energy transmission in the heterostructure that contains one interface. The local vibrational modes are found to be excited only by shear stress induced by transverse phonons. Among various resonant modes, the one with the lowest frequency has the strongest effect. This work has also demonstrated the collective motion of dislocations under ultrafast phonon pulses. In addition, the dynamic properties of the misfit dislocation network localized within one interface are found to be significantly altered by the presence of misfit dislocations at other interfaces, thus further confirming the cooperative dynamic nature of the motion of dislocations and phonons. [Display omitted]</description><subject>dislocations</subject><subject>MATERIALS SCIENCE</subject><subject>multiscale</subject><subject>phonons</subject><subject>resonance</subject><subject>super-lattices</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhQdRsFZ_ghBc6WKmeXYmKxHxBQWL1nVIMndoapuUSVD892ac7l3duzjfufecorgkuCKYzGebStukdzpVFFNaEdIQzo6KCWlqVlIu2HHemZDlnAt-WpzFuMGY0JrjSbF6gxi89gk5n6DPRi54ZCB9A3i0XwcffETat2hpVjBbmndA15m-QTsXO5dQ6-I2WP2H-YyF_jOeFyed3ka4OMxp8fH4sLp_LhevTy_3d4vSci5TyYltxZxyqBvWMCmowMRqRiyTgCE_bxoqQGKbYwF01AjDjGRQt8Z0XQ1sWlyNviEmp6J1CezaBu_BJkVkzSWjWSRGke1DjD10at-7ne5_FMFq6E9t1KE_NfSnxv4ydztykBN8OeiHA-AttK4f_Nvg_nH4BZWrezQ</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Li, Yang</creator><creator>Zheng, Zexi</creator><creator>Diaz, Adrian</creator><creator>Phillpot, Simon R.</creator><creator>McDowell, David L.</creator><creator>Chen, Youping</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220915</creationdate><title>Resonant interaction between phonons and PbTe/PbSe (001) misfit dislocation networks</title><author>Li, Yang ; Zheng, Zexi ; Diaz, Adrian ; Phillpot, Simon R. ; McDowell, David L. ; Chen, Youping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-41cd5624e78383952501ca31c39e0e873b825e90c202eef2b5b3b93e7dbbff7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>dislocations</topic><topic>MATERIALS SCIENCE</topic><topic>multiscale</topic><topic>phonons</topic><topic>resonance</topic><topic>super-lattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zheng, Zexi</creatorcontrib><creatorcontrib>Diaz, Adrian</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>McDowell, David L.</creatorcontrib><creatorcontrib>Chen, Youping</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Zheng, Zexi</au><au>Diaz, Adrian</au><au>Phillpot, Simon R.</au><au>McDowell, David L.</au><au>Chen, Youping</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant interaction between phonons and PbTe/PbSe (001) misfit dislocation networks</atitle><jtitle>Acta materialia</jtitle><date>2022-09-15</date><risdate>2022</risdate><volume>237</volume><spage>118143</spage><pages>118143-</pages><artnum>118143</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>This work aims at a quantitative and mechanistic understanding of the dynamic process of the phonon-dislocation interaction in PbTe/PbSe (001) heterostructures using the Concurrent Atomistic-Continuum (CAC) method as the simulation tool. The misfit dislocation network and the atomic-scale dislocation core structure obtained in the simulations are found to agree reasonably well with the experimental observations of the PbTe/PbSe (001) interface. Through visualizing the dynamic interaction between phonons and dislocations, as well as quantifying the dislocation vibration amplitude, the phonon energy transmission, and the thermal resistance of the misfit interfaces, this work has illustrated and quantified two mechanisms for phonon-dislocation interaction: (1) phonon scattering by the strain field of dislocations, and (2) phonon scattering by dislocations that vibrate via the local modes of a dislocation network; the latter, leads to resonant phonon-dislocation interaction, which is manifested as local maxima of out-of-phase vibration of the atoms on the two sides of the slip plane, leading to local minima of the energy transmission in the heterostructure that contains one interface. The local vibrational modes are found to be excited only by shear stress induced by transverse phonons. Among various resonant modes, the one with the lowest frequency has the strongest effect. This work has also demonstrated the collective motion of dislocations under ultrafast phonon pulses. In addition, the dynamic properties of the misfit dislocation network localized within one interface are found to be significantly altered by the presence of misfit dislocations at other interfaces, thus further confirming the cooperative dynamic nature of the motion of dislocations and phonons. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2022.118143</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2022-09, Vol.237, p.118143, Article 118143
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1974932
source Elsevier ScienceDirect Journals Complete
subjects dislocations
MATERIALS SCIENCE
multiscale
phonons
resonance
super-lattices
title Resonant interaction between phonons and PbTe/PbSe (001) misfit dislocation networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20interaction%20between%20phonons%20and%20PbTe/PbSe%20(001)%20misfit%20dislocation%20networks&rft.jtitle=Acta%20materialia&rft.au=Li,%20Yang&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-09-15&rft.volume=237&rft.spage=118143&rft.pages=118143-&rft.artnum=118143&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2022.118143&rft_dat=%3Celsevier_osti_%3ES1359645422005249%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645422005249&rfr_iscdi=true