Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation
Quantum hydrodynamics is the emergent classical dynamics governing transport of conserved quantities in generic strongly interacting quantum systems. Here, recent matrix product operator methods [1,2] have made simulations of quantum hydrodynamics in 1+1D tractable, but they do not naturally general...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2022-09, Vol.106 (12), Article 125130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physical review. B |
container_volume | 106 |
creator | Sewell, Troy J. White, Christopher David |
description | Quantum hydrodynamics is the emergent classical dynamics governing transport of conserved quantities in generic strongly interacting quantum systems. Here, recent matrix product operator methods [1,2] have made simulations of quantum hydrodynamics in 1+1D tractable, but they do not naturally generalize to 2+1D or higher, and they offer limited guidance as to the difficulty of simulations on quantum computers. Near-Clifford simulation algorithms are not limited to one dimension, and future error-corrected quantum computers will likely be bottlenecked by non-Clifford operations. We therefore investigate the non-Clifford resource requirements for simulation of quantum hydrodynamics using mana, a resource theory of non-Clifford operations. For infinite-temperature starting states, we find that the mana of subsystems quickly approaches zero, while for starting states with energy above some threshold the mana approaches a nonzero value. Surprisingly, in each case the finite-time mana is governed by the subsystem entropy, not the thermal state mana; we argue that this is because mana is a sensitive diagnostic of finite-time deviations from canonical typicality. |
doi_str_mv | 10.1103/PhysRevB.106.125130 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1974587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevB_106_125130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-a3b250fd434a725c501ff22fbb14a938284f7f274686ee01d075b9ac7506d1a63</originalsourceid><addsrcrecordid>eNo9kEFLAzEYRIMoWGp_gZfgfeuXZJNsvGlRK1QsouBtyWYTG9kmkkSh_npbq55mGB5zeAidEpgSAux8udrkR_t5NSUgpoRywuAAjWgtVKWUUIf_ncMxmuT8BgBEgJKgRujlXgeNdehxWdm01oP_0sXHcIGXKXY-vO527KzOvvODLxscHQ5Wp2o2eOdi6vFcr_1QYvA64OzXH8PPwQk6cnrIdvKbY_R8c_00m1eLh9u72eWiMlSKUmnWUQ6ur1mtJeWGA3GOUtd1pNaKNbSpnXRU1qIR1gLpQfJOaSM5iJ5owcbobP8bc_FtNr5YszIxBGtKS5SseSO3ENtDJsWck3Xte_JrnTYtgXYnsf2TuB1Eu5fIvgFnT2c6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation</title><source>American Physical Society Journals</source><creator>Sewell, Troy J. ; White, Christopher David</creator><creatorcontrib>Sewell, Troy J. ; White, Christopher David ; Univ. of Maryland, College Park, MD (United States)</creatorcontrib><description>Quantum hydrodynamics is the emergent classical dynamics governing transport of conserved quantities in generic strongly interacting quantum systems. Here, recent matrix product operator methods [1,2] have made simulations of quantum hydrodynamics in 1+1D tractable, but they do not naturally generalize to 2+1D or higher, and they offer limited guidance as to the difficulty of simulations on quantum computers. Near-Clifford simulation algorithms are not limited to one dimension, and future error-corrected quantum computers will likely be bottlenecked by non-Clifford operations. We therefore investigate the non-Clifford resource requirements for simulation of quantum hydrodynamics using mana, a resource theory of non-Clifford operations. For infinite-temperature starting states, we find that the mana of subsystems quickly approaches zero, while for starting states with energy above some threshold the mana approaches a nonzero value. Surprisingly, in each case the finite-time mana is governed by the subsystem entropy, not the thermal state mana; we argue that this is because mana is a sensitive diagnostic of finite-time deviations from canonical typicality.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.106.125130</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>1-dimensional spin chains ; approximation methods for many-body systems ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; density matrix methods ; Eigenstate thermalization ; entanglement entropy ; entanglement production ; hydrodynamics ; MATHEMATICS AND COMPUTING ; nonequilibrium statistical mechanics ; quantum chaos ; quantum computation ; quantum correlations in quantum information ; quantum entanglement ; quantum information ; quantum information theory ; quantum many-body systems ; quantum spin chains ; quantum spin models ; quantum statistical mechanics ; thermalization</subject><ispartof>Physical review. B, 2022-09, Vol.106 (12), Article 125130</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-a3b250fd434a725c501ff22fbb14a938284f7f274686ee01d075b9ac7506d1a63</citedby><cites>FETCH-LOGICAL-c276t-a3b250fd434a725c501ff22fbb14a938284f7f274686ee01d075b9ac7506d1a63</cites><orcidid>0000-0002-4737-585X ; 0000-0002-8372-2492 ; 0000000283722492 ; 000000024737585X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1974587$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sewell, Troy J.</creatorcontrib><creatorcontrib>White, Christopher David</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><title>Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation</title><title>Physical review. B</title><description>Quantum hydrodynamics is the emergent classical dynamics governing transport of conserved quantities in generic strongly interacting quantum systems. Here, recent matrix product operator methods [1,2] have made simulations of quantum hydrodynamics in 1+1D tractable, but they do not naturally generalize to 2+1D or higher, and they offer limited guidance as to the difficulty of simulations on quantum computers. Near-Clifford simulation algorithms are not limited to one dimension, and future error-corrected quantum computers will likely be bottlenecked by non-Clifford operations. We therefore investigate the non-Clifford resource requirements for simulation of quantum hydrodynamics using mana, a resource theory of non-Clifford operations. For infinite-temperature starting states, we find that the mana of subsystems quickly approaches zero, while for starting states with energy above some threshold the mana approaches a nonzero value. Surprisingly, in each case the finite-time mana is governed by the subsystem entropy, not the thermal state mana; we argue that this is because mana is a sensitive diagnostic of finite-time deviations from canonical typicality.</description><subject>1-dimensional spin chains</subject><subject>approximation methods for many-body systems</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>density matrix methods</subject><subject>Eigenstate thermalization</subject><subject>entanglement entropy</subject><subject>entanglement production</subject><subject>hydrodynamics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>nonequilibrium statistical mechanics</subject><subject>quantum chaos</subject><subject>quantum computation</subject><subject>quantum correlations in quantum information</subject><subject>quantum entanglement</subject><subject>quantum information</subject><subject>quantum information theory</subject><subject>quantum many-body systems</subject><subject>quantum spin chains</subject><subject>quantum spin models</subject><subject>quantum statistical mechanics</subject><subject>thermalization</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEYRIMoWGp_gZfgfeuXZJNsvGlRK1QsouBtyWYTG9kmkkSh_npbq55mGB5zeAidEpgSAux8udrkR_t5NSUgpoRywuAAjWgtVKWUUIf_ncMxmuT8BgBEgJKgRujlXgeNdehxWdm01oP_0sXHcIGXKXY-vO527KzOvvODLxscHQ5Wp2o2eOdi6vFcr_1QYvA64OzXH8PPwQk6cnrIdvKbY_R8c_00m1eLh9u72eWiMlSKUmnWUQ6ur1mtJeWGA3GOUtd1pNaKNbSpnXRU1qIR1gLpQfJOaSM5iJ5owcbobP8bc_FtNr5YszIxBGtKS5SseSO3ENtDJsWck3Xte_JrnTYtgXYnsf2TuB1Eu5fIvgFnT2c6</recordid><startdate>20220919</startdate><enddate>20220919</enddate><creator>Sewell, Troy J.</creator><creator>White, Christopher David</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4737-585X</orcidid><orcidid>https://orcid.org/0000-0002-8372-2492</orcidid><orcidid>https://orcid.org/0000000283722492</orcidid><orcidid>https://orcid.org/000000024737585X</orcidid></search><sort><creationdate>20220919</creationdate><title>Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation</title><author>Sewell, Troy J. ; White, Christopher David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-a3b250fd434a725c501ff22fbb14a938284f7f274686ee01d075b9ac7506d1a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1-dimensional spin chains</topic><topic>approximation methods for many-body systems</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>density matrix methods</topic><topic>Eigenstate thermalization</topic><topic>entanglement entropy</topic><topic>entanglement production</topic><topic>hydrodynamics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>nonequilibrium statistical mechanics</topic><topic>quantum chaos</topic><topic>quantum computation</topic><topic>quantum correlations in quantum information</topic><topic>quantum entanglement</topic><topic>quantum information</topic><topic>quantum information theory</topic><topic>quantum many-body systems</topic><topic>quantum spin chains</topic><topic>quantum spin models</topic><topic>quantum statistical mechanics</topic><topic>thermalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sewell, Troy J.</creatorcontrib><creatorcontrib>White, Christopher David</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sewell, Troy J.</au><au>White, Christopher David</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation</atitle><jtitle>Physical review. B</jtitle><date>2022-09-19</date><risdate>2022</risdate><volume>106</volume><issue>12</issue><artnum>125130</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Quantum hydrodynamics is the emergent classical dynamics governing transport of conserved quantities in generic strongly interacting quantum systems. Here, recent matrix product operator methods [1,2] have made simulations of quantum hydrodynamics in 1+1D tractable, but they do not naturally generalize to 2+1D or higher, and they offer limited guidance as to the difficulty of simulations on quantum computers. Near-Clifford simulation algorithms are not limited to one dimension, and future error-corrected quantum computers will likely be bottlenecked by non-Clifford operations. We therefore investigate the non-Clifford resource requirements for simulation of quantum hydrodynamics using mana, a resource theory of non-Clifford operations. For infinite-temperature starting states, we find that the mana of subsystems quickly approaches zero, while for starting states with energy above some threshold the mana approaches a nonzero value. Surprisingly, in each case the finite-time mana is governed by the subsystem entropy, not the thermal state mana; we argue that this is because mana is a sensitive diagnostic of finite-time deviations from canonical typicality.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevB.106.125130</doi><orcidid>https://orcid.org/0000-0002-4737-585X</orcidid><orcidid>https://orcid.org/0000-0002-8372-2492</orcidid><orcidid>https://orcid.org/0000000283722492</orcidid><orcidid>https://orcid.org/000000024737585X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2022-09, Vol.106 (12), Article 125130 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1974587 |
source | American Physical Society Journals |
subjects | 1-dimensional spin chains approximation methods for many-body systems CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS density matrix methods Eigenstate thermalization entanglement entropy entanglement production hydrodynamics MATHEMATICS AND COMPUTING nonequilibrium statistical mechanics quantum chaos quantum computation quantum correlations in quantum information quantum entanglement quantum information quantum information theory quantum many-body systems quantum spin chains quantum spin models quantum statistical mechanics thermalization |
title | Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mana%20and%20thermalization:%20Probing%20the%20feasibility%20of%20near-Clifford%20Hamiltonian%20simulation&rft.jtitle=Physical%20review.%20B&rft.au=Sewell,%20Troy%20J.&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2022-09-19&rft.volume=106&rft.issue=12&rft.artnum=125130&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.106.125130&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevB_106_125130%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |