Dynamical topological phase realized in a trapped-ion quantum simulator
Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation....
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-07, Vol.607 (7919), p.463-467 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 467 |
---|---|
container_issue | 7919 |
container_start_page | 463 |
container_title | Nature (London) |
container_volume | 607 |
creator | Dumitrescu, Philipp T. Bohnet, Justin G. Gaebler, John P. Hankin, Aaron Hayes, David Kumar, Ajesh Neyenhuis, Brian Vasseur, Romain Potter, Andrew C. |
description | Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders
1
–
5
. In this work, we demonstrate an emergent dynamical symmetry-protected topological phase
6
, in a quasiperiodically driven array of ten
171
Yb
+
hyperfine qubits in Quantinuum’s System Model H1 trapped-ion quantum processor
7
. This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders
8
,
9
that would enable error-resilient manipulation of quantum information.
A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten
171
Yb
+
hyperfine qubits in a model trapped-ion quantum processor. |
doi_str_mv | 10.1038/s41586-022-04853-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1974337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692757301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-89f6206a9cee6b6ba54e4d218c08f1b6224a7871a8ad915b2d4214f2c530d2f3</originalsourceid><addsrcrecordid>eNp90L1OwzAUBWALgUQpvABTBAuLwX-xnREVKEhILN0t13FaV4md2s5Qnp6UICExMN07fOdK9wBwjdE9RlQ-JIZLySEiBCImSwrZCZhhJjhkXIpTMEOISIgk5efgIqUdQqjEgs3A8ungdeeMbosc-tCGzffeb3WyRbS6dZ-2LpwvdJGj7ntbQxd8sR-0z0NXJNcNrc4hXoKzRrfJXv3MOVi9PK8Wr_D9Y_m2eHyHhhGaoawaThDXlbGWr_lal8yymmBpkGzwmhPCtJACa6nrCpdrUjOCWUNMSVFNGjoHN9PZkLJTybhszdYE763JCleCUSpGdDehPob9YFNWnUvGtq32NgxJEV4RUQqK8Ehv_9BdGKIfPzgqWpWMimpUZFImhpSibVQfXafjQWGkjv2rqX819q---1dsDNEplEbsNzb-nv4n9QWoAIct</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693954379</pqid></control><display><type>article</type><title>Dynamical topological phase realized in a trapped-ion quantum simulator</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Dumitrescu, Philipp T. ; Bohnet, Justin G. ; Gaebler, John P. ; Hankin, Aaron ; Hayes, David ; Kumar, Ajesh ; Neyenhuis, Brian ; Vasseur, Romain ; Potter, Andrew C.</creator><creatorcontrib>Dumitrescu, Philipp T. ; Bohnet, Justin G. ; Gaebler, John P. ; Hankin, Aaron ; Hayes, David ; Kumar, Ajesh ; Neyenhuis, Brian ; Vasseur, Romain ; Potter, Andrew C. ; Univ. of Massachusetts, Amherst, MA (United States)</creatorcontrib><description>Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders
1
–
5
. In this work, we demonstrate an emergent dynamical symmetry-protected topological phase
6
, in a quasiperiodically driven array of ten
171
Yb
+
hyperfine qubits in Quantinuum’s System Model H1 trapped-ion quantum processor
7
. This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders
8
,
9
that would enable error-resilient manipulation of quantum information.
A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten
171
Yb
+
hyperfine qubits in a model trapped-ion quantum processor.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04853-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2792 ; 639/766/483/3926 ; 639/766/483/640 ; Arrays ; Broken symmetry ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Critical phenomena ; Crosstalk ; Equilibrium ; Errors ; Humanities and Social Sciences ; multidisciplinary ; Perturbation ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Quantum simulation ; Qubits (quantum computing) ; Science ; Science (multidisciplinary) ; Symmetry ; Theoretical physics ; Topological matter ; Topology</subject><ispartof>Nature (London), 2022-07, Vol.607 (7919), p.463-467</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>Copyright Nature Publishing Group Jul 21, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-89f6206a9cee6b6ba54e4d218c08f1b6224a7871a8ad915b2d4214f2c530d2f3</citedby><cites>FETCH-LOGICAL-c423t-89f6206a9cee6b6ba54e4d218c08f1b6224a7871a8ad915b2d4214f2c530d2f3</cites><orcidid>0000-0002-5707-3978 ; 0000-0001-5048-1269 ; 0000000150481269 ; 0000000257073978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1974337$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumitrescu, Philipp T.</creatorcontrib><creatorcontrib>Bohnet, Justin G.</creatorcontrib><creatorcontrib>Gaebler, John P.</creatorcontrib><creatorcontrib>Hankin, Aaron</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><creatorcontrib>Kumar, Ajesh</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Vasseur, Romain</creatorcontrib><creatorcontrib>Potter, Andrew C.</creatorcontrib><creatorcontrib>Univ. of Massachusetts, Amherst, MA (United States)</creatorcontrib><title>Dynamical topological phase realized in a trapped-ion quantum simulator</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders
1
–
5
. In this work, we demonstrate an emergent dynamical symmetry-protected topological phase
6
, in a quasiperiodically driven array of ten
171
Yb
+
hyperfine qubits in Quantinuum’s System Model H1 trapped-ion quantum processor
7
. This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders
8
,
9
that would enable error-resilient manipulation of quantum information.
A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten
171
Yb
+
hyperfine qubits in a model trapped-ion quantum processor.</description><subject>639/766/119/2792</subject><subject>639/766/483/3926</subject><subject>639/766/483/640</subject><subject>Arrays</subject><subject>Broken symmetry</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Critical phenomena</subject><subject>Crosstalk</subject><subject>Equilibrium</subject><subject>Errors</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Perturbation</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Quantum simulation</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symmetry</subject><subject>Theoretical physics</subject><subject>Topological matter</subject><subject>Topology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90L1OwzAUBWALgUQpvABTBAuLwX-xnREVKEhILN0t13FaV4md2s5Qnp6UICExMN07fOdK9wBwjdE9RlQ-JIZLySEiBCImSwrZCZhhJjhkXIpTMEOISIgk5efgIqUdQqjEgs3A8ungdeeMbosc-tCGzffeb3WyRbS6dZ-2LpwvdJGj7ntbQxd8sR-0z0NXJNcNrc4hXoKzRrfJXv3MOVi9PK8Wr_D9Y_m2eHyHhhGaoawaThDXlbGWr_lal8yymmBpkGzwmhPCtJACa6nrCpdrUjOCWUNMSVFNGjoHN9PZkLJTybhszdYE763JCleCUSpGdDehPob9YFNWnUvGtq32NgxJEV4RUQqK8Ehv_9BdGKIfPzgqWpWMimpUZFImhpSibVQfXafjQWGkjv2rqX819q---1dsDNEplEbsNzb-nv4n9QWoAIct</recordid><startdate>20220721</startdate><enddate>20220721</enddate><creator>Dumitrescu, Philipp T.</creator><creator>Bohnet, Justin G.</creator><creator>Gaebler, John P.</creator><creator>Hankin, Aaron</creator><creator>Hayes, David</creator><creator>Kumar, Ajesh</creator><creator>Neyenhuis, Brian</creator><creator>Vasseur, Romain</creator><creator>Potter, Andrew C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5707-3978</orcidid><orcidid>https://orcid.org/0000-0001-5048-1269</orcidid><orcidid>https://orcid.org/0000000150481269</orcidid><orcidid>https://orcid.org/0000000257073978</orcidid></search><sort><creationdate>20220721</creationdate><title>Dynamical topological phase realized in a trapped-ion quantum simulator</title><author>Dumitrescu, Philipp T. ; Bohnet, Justin G. ; Gaebler, John P. ; Hankin, Aaron ; Hayes, David ; Kumar, Ajesh ; Neyenhuis, Brian ; Vasseur, Romain ; Potter, Andrew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-89f6206a9cee6b6ba54e4d218c08f1b6224a7871a8ad915b2d4214f2c530d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/119/2792</topic><topic>639/766/483/3926</topic><topic>639/766/483/640</topic><topic>Arrays</topic><topic>Broken symmetry</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Critical phenomena</topic><topic>Crosstalk</topic><topic>Equilibrium</topic><topic>Errors</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Perturbation</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Quantum simulation</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symmetry</topic><topic>Theoretical physics</topic><topic>Topological matter</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumitrescu, Philipp T.</creatorcontrib><creatorcontrib>Bohnet, Justin G.</creatorcontrib><creatorcontrib>Gaebler, John P.</creatorcontrib><creatorcontrib>Hankin, Aaron</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><creatorcontrib>Kumar, Ajesh</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Vasseur, Romain</creatorcontrib><creatorcontrib>Potter, Andrew C.</creatorcontrib><creatorcontrib>Univ. of Massachusetts, Amherst, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumitrescu, Philipp T.</au><au>Bohnet, Justin G.</au><au>Gaebler, John P.</au><au>Hankin, Aaron</au><au>Hayes, David</au><au>Kumar, Ajesh</au><au>Neyenhuis, Brian</au><au>Vasseur, Romain</au><au>Potter, Andrew C.</au><aucorp>Univ. of Massachusetts, Amherst, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical topological phase realized in a trapped-ion quantum simulator</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-07-21</date><risdate>2022</risdate><volume>607</volume><issue>7919</issue><spage>463</spage><epage>467</epage><pages>463-467</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders
1
–
5
. In this work, we demonstrate an emergent dynamical symmetry-protected topological phase
6
, in a quasiperiodically driven array of ten
171
Yb
+
hyperfine qubits in Quantinuum’s System Model H1 trapped-ion quantum processor
7
. This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders
8
,
9
that would enable error-resilient manipulation of quantum information.
A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten
171
Yb
+
hyperfine qubits in a model trapped-ion quantum processor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-022-04853-4</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5707-3978</orcidid><orcidid>https://orcid.org/0000-0001-5048-1269</orcidid><orcidid>https://orcid.org/0000000150481269</orcidid><orcidid>https://orcid.org/0000000257073978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-07, Vol.607 (7919), p.463-467 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1974337 |
source | Nature Journals Online; Alma/SFX Local Collection |
subjects | 639/766/119/2792 639/766/483/3926 639/766/483/640 Arrays Broken symmetry CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Critical phenomena Crosstalk Equilibrium Errors Humanities and Social Sciences multidisciplinary Perturbation Quantum computing Quantum entanglement Quantum phenomena Quantum simulation Qubits (quantum computing) Science Science (multidisciplinary) Symmetry Theoretical physics Topological matter Topology |
title | Dynamical topological phase realized in a trapped-ion quantum simulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20topological%20phase%20realized%20in%20a%20trapped-ion%20quantum%20simulator&rft.jtitle=Nature%20(London)&rft.au=Dumitrescu,%20Philipp%20T.&rft.aucorp=Univ.%20of%20Massachusetts,%20Amherst,%20MA%20(United%20States)&rft.date=2022-07-21&rft.volume=607&rft.issue=7919&rft.spage=463&rft.epage=467&rft.pages=463-467&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04853-4&rft_dat=%3Cproquest_osti_%3E2692757301%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693954379&rft_id=info:pmid/&rfr_iscdi=true |