Dynamical topological phase realized in a trapped-ion quantum simulator

Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-07, Vol.607 (7919), p.463-467
Hauptverfasser: Dumitrescu, Philipp T., Bohnet, Justin G., Gaebler, John P., Hankin, Aaron, Hayes, David, Kumar, Ajesh, Neyenhuis, Brian, Vasseur, Romain, Potter, Andrew C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue 7919
container_start_page 463
container_title Nature (London)
container_volume 607
creator Dumitrescu, Philipp T.
Bohnet, Justin G.
Gaebler, John P.
Hankin, Aaron
Hayes, David
Kumar, Ajesh
Neyenhuis, Brian
Vasseur, Romain
Potter, Andrew C.
description Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders 1 – 5 . In this work, we demonstrate an emergent dynamical symmetry-protected topological phase 6 , in a quasiperiodically driven array of ten 171 Yb + hyperfine qubits in Quantinuum’s System Model H1 trapped-ion quantum processor 7 . This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders 8 , 9 that would enable error-resilient manipulation of quantum information. A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten 171 Yb + hyperfine qubits in a model trapped-ion quantum processor.
doi_str_mv 10.1038/s41586-022-04853-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1974337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692757301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-89f6206a9cee6b6ba54e4d218c08f1b6224a7871a8ad915b2d4214f2c530d2f3</originalsourceid><addsrcrecordid>eNp90L1OwzAUBWALgUQpvABTBAuLwX-xnREVKEhILN0t13FaV4md2s5Qnp6UICExMN07fOdK9wBwjdE9RlQ-JIZLySEiBCImSwrZCZhhJjhkXIpTMEOISIgk5efgIqUdQqjEgs3A8ungdeeMbosc-tCGzffeb3WyRbS6dZ-2LpwvdJGj7ntbQxd8sR-0z0NXJNcNrc4hXoKzRrfJXv3MOVi9PK8Wr_D9Y_m2eHyHhhGaoawaThDXlbGWr_lal8yymmBpkGzwmhPCtJACa6nrCpdrUjOCWUNMSVFNGjoHN9PZkLJTybhszdYE763JCleCUSpGdDehPob9YFNWnUvGtq32NgxJEV4RUQqK8Ehv_9BdGKIfPzgqWpWMimpUZFImhpSibVQfXafjQWGkjv2rqX819q---1dsDNEplEbsNzb-nv4n9QWoAIct</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693954379</pqid></control><display><type>article</type><title>Dynamical topological phase realized in a trapped-ion quantum simulator</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Dumitrescu, Philipp T. ; Bohnet, Justin G. ; Gaebler, John P. ; Hankin, Aaron ; Hayes, David ; Kumar, Ajesh ; Neyenhuis, Brian ; Vasseur, Romain ; Potter, Andrew C.</creator><creatorcontrib>Dumitrescu, Philipp T. ; Bohnet, Justin G. ; Gaebler, John P. ; Hankin, Aaron ; Hayes, David ; Kumar, Ajesh ; Neyenhuis, Brian ; Vasseur, Romain ; Potter, Andrew C. ; Univ. of Massachusetts, Amherst, MA (United States)</creatorcontrib><description>Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders 1 – 5 . In this work, we demonstrate an emergent dynamical symmetry-protected topological phase 6 , in a quasiperiodically driven array of ten 171 Yb + hyperfine qubits in Quantinuum’s System Model H1 trapped-ion quantum processor 7 . This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders 8 , 9 that would enable error-resilient manipulation of quantum information. A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten 171 Yb + hyperfine qubits in a model trapped-ion quantum processor.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04853-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2792 ; 639/766/483/3926 ; 639/766/483/640 ; Arrays ; Broken symmetry ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Critical phenomena ; Crosstalk ; Equilibrium ; Errors ; Humanities and Social Sciences ; multidisciplinary ; Perturbation ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Quantum simulation ; Qubits (quantum computing) ; Science ; Science (multidisciplinary) ; Symmetry ; Theoretical physics ; Topological matter ; Topology</subject><ispartof>Nature (London), 2022-07, Vol.607 (7919), p.463-467</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>Copyright Nature Publishing Group Jul 21, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-89f6206a9cee6b6ba54e4d218c08f1b6224a7871a8ad915b2d4214f2c530d2f3</citedby><cites>FETCH-LOGICAL-c423t-89f6206a9cee6b6ba54e4d218c08f1b6224a7871a8ad915b2d4214f2c530d2f3</cites><orcidid>0000-0002-5707-3978 ; 0000-0001-5048-1269 ; 0000000150481269 ; 0000000257073978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1974337$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumitrescu, Philipp T.</creatorcontrib><creatorcontrib>Bohnet, Justin G.</creatorcontrib><creatorcontrib>Gaebler, John P.</creatorcontrib><creatorcontrib>Hankin, Aaron</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><creatorcontrib>Kumar, Ajesh</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Vasseur, Romain</creatorcontrib><creatorcontrib>Potter, Andrew C.</creatorcontrib><creatorcontrib>Univ. of Massachusetts, Amherst, MA (United States)</creatorcontrib><title>Dynamical topological phase realized in a trapped-ion quantum simulator</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders 1 – 5 . In this work, we demonstrate an emergent dynamical symmetry-protected topological phase 6 , in a quasiperiodically driven array of ten 171 Yb + hyperfine qubits in Quantinuum’s System Model H1 trapped-ion quantum processor 7 . This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders 8 , 9 that would enable error-resilient manipulation of quantum information. A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten 171 Yb + hyperfine qubits in a model trapped-ion quantum processor.</description><subject>639/766/119/2792</subject><subject>639/766/483/3926</subject><subject>639/766/483/640</subject><subject>Arrays</subject><subject>Broken symmetry</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Critical phenomena</subject><subject>Crosstalk</subject><subject>Equilibrium</subject><subject>Errors</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Perturbation</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Quantum simulation</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symmetry</subject><subject>Theoretical physics</subject><subject>Topological matter</subject><subject>Topology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90L1OwzAUBWALgUQpvABTBAuLwX-xnREVKEhILN0t13FaV4md2s5Qnp6UICExMN07fOdK9wBwjdE9RlQ-JIZLySEiBCImSwrZCZhhJjhkXIpTMEOISIgk5efgIqUdQqjEgs3A8ungdeeMbosc-tCGzffeb3WyRbS6dZ-2LpwvdJGj7ntbQxd8sR-0z0NXJNcNrc4hXoKzRrfJXv3MOVi9PK8Wr_D9Y_m2eHyHhhGaoawaThDXlbGWr_lal8yymmBpkGzwmhPCtJACa6nrCpdrUjOCWUNMSVFNGjoHN9PZkLJTybhszdYE763JCleCUSpGdDehPob9YFNWnUvGtq32NgxJEV4RUQqK8Ehv_9BdGKIfPzgqWpWMimpUZFImhpSibVQfXafjQWGkjv2rqX819q---1dsDNEplEbsNzb-nv4n9QWoAIct</recordid><startdate>20220721</startdate><enddate>20220721</enddate><creator>Dumitrescu, Philipp T.</creator><creator>Bohnet, Justin G.</creator><creator>Gaebler, John P.</creator><creator>Hankin, Aaron</creator><creator>Hayes, David</creator><creator>Kumar, Ajesh</creator><creator>Neyenhuis, Brian</creator><creator>Vasseur, Romain</creator><creator>Potter, Andrew C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5707-3978</orcidid><orcidid>https://orcid.org/0000-0001-5048-1269</orcidid><orcidid>https://orcid.org/0000000150481269</orcidid><orcidid>https://orcid.org/0000000257073978</orcidid></search><sort><creationdate>20220721</creationdate><title>Dynamical topological phase realized in a trapped-ion quantum simulator</title><author>Dumitrescu, Philipp T. ; Bohnet, Justin G. ; Gaebler, John P. ; Hankin, Aaron ; Hayes, David ; Kumar, Ajesh ; Neyenhuis, Brian ; Vasseur, Romain ; Potter, Andrew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-89f6206a9cee6b6ba54e4d218c08f1b6224a7871a8ad915b2d4214f2c530d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/119/2792</topic><topic>639/766/483/3926</topic><topic>639/766/483/640</topic><topic>Arrays</topic><topic>Broken symmetry</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Critical phenomena</topic><topic>Crosstalk</topic><topic>Equilibrium</topic><topic>Errors</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Perturbation</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Quantum simulation</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symmetry</topic><topic>Theoretical physics</topic><topic>Topological matter</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumitrescu, Philipp T.</creatorcontrib><creatorcontrib>Bohnet, Justin G.</creatorcontrib><creatorcontrib>Gaebler, John P.</creatorcontrib><creatorcontrib>Hankin, Aaron</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><creatorcontrib>Kumar, Ajesh</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Vasseur, Romain</creatorcontrib><creatorcontrib>Potter, Andrew C.</creatorcontrib><creatorcontrib>Univ. of Massachusetts, Amherst, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumitrescu, Philipp T.</au><au>Bohnet, Justin G.</au><au>Gaebler, John P.</au><au>Hankin, Aaron</au><au>Hayes, David</au><au>Kumar, Ajesh</au><au>Neyenhuis, Brian</au><au>Vasseur, Romain</au><au>Potter, Andrew C.</au><aucorp>Univ. of Massachusetts, Amherst, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical topological phase realized in a trapped-ion quantum simulator</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-07-21</date><risdate>2022</risdate><volume>607</volume><issue>7919</issue><spage>463</spage><epage>467</epage><pages>463-467</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders 1 – 5 . In this work, we demonstrate an emergent dynamical symmetry-protected topological phase 6 , in a quasiperiodically driven array of ten 171 Yb + hyperfine qubits in Quantinuum’s System Model H1 trapped-ion quantum processor 7 . This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders 8 , 9 that would enable error-resilient manipulation of quantum information. A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten 171 Yb + hyperfine qubits in a model trapped-ion quantum processor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-022-04853-4</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5707-3978</orcidid><orcidid>https://orcid.org/0000-0001-5048-1269</orcidid><orcidid>https://orcid.org/0000000150481269</orcidid><orcidid>https://orcid.org/0000000257073978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-07, Vol.607 (7919), p.463-467
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1974337
source Nature Journals Online; Alma/SFX Local Collection
subjects 639/766/119/2792
639/766/483/3926
639/766/483/640
Arrays
Broken symmetry
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Critical phenomena
Crosstalk
Equilibrium
Errors
Humanities and Social Sciences
multidisciplinary
Perturbation
Quantum computing
Quantum entanglement
Quantum phenomena
Quantum simulation
Qubits (quantum computing)
Science
Science (multidisciplinary)
Symmetry
Theoretical physics
Topological matter
Topology
title Dynamical topological phase realized in a trapped-ion quantum simulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20topological%20phase%20realized%20in%20a%20trapped-ion%20quantum%20simulator&rft.jtitle=Nature%20(London)&rft.au=Dumitrescu,%20Philipp%20T.&rft.aucorp=Univ.%20of%20Massachusetts,%20Amherst,%20MA%20(United%20States)&rft.date=2022-07-21&rft.volume=607&rft.issue=7919&rft.spage=463&rft.epage=467&rft.pages=463-467&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04853-4&rft_dat=%3Cproquest_osti_%3E2692757301%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693954379&rft_id=info:pmid/&rfr_iscdi=true