Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut

Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on quantum computing (Print) 2023-09, Vol.4 (3), p.1-15
Hauptverfasser: Shaydulin, Ruslan, Lotshaw, Phillip C., Larson, Jeffrey, Ostrowski, James, Humble, Travis S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 3
container_start_page 1
container_title ACM transactions on quantum computing (Print)
container_volume 4
creator Shaydulin, Ruslan
Lotshaw, Phillip C.
Larson, Jeffrey
Ostrowski, James
Humble, Travis S.
description Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single “typical” vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in \(96.35\% \) of our cases.
doi_str_mv 10.1145/3584706
format Article
fullrecord <record><control><sourceid>acm_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1974336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3584706</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2196-78a06d97392e7d0f3f09c8cd5314fb05397863b9f020ff00c097e281037ff1043</originalsourceid><addsrcrecordid>eNo90M9LwzAUB_AgCo45vHsKXjxVX5I2aY6j-JPJFCYeS5YmLmKbkmQw_eutdO70vvA-PHhfhM4JXBOSFzesKHMB_AhNKM9Zxksijg8Z5CmaxfgJALQgjAKdoKcXFVRrkgl4FVQX7RCsD_h1q7q0bfG874PfuVYlg5d9cq37Ucn5DnuL34372CTT4Ge1q7bpDJ1Y9RXNbD-n6O3udlU9ZIvl_WM1X2SKEskzUSrgjRRMUiMasMyC1KVuCkZyu4aCSVFytpYWKFgLoEEKQ0sCTFhLIGdTdDne9TG5OmqXjN5o33VGp5pIkTPGB3Q1Ih18jMHYug_DF-G7JlD_VVXvqxrkxSiVbg_of_kL18FhfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut</title><source>ACM Digital Library Complete</source><creator>Shaydulin, Ruslan ; Lotshaw, Phillip C. ; Larson, Jeffrey ; Ostrowski, James ; Humble, Travis S.</creator><creatorcontrib>Shaydulin, Ruslan ; Lotshaw, Phillip C. ; Larson, Jeffrey ; Ostrowski, James ; Humble, Travis S. ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single “typical” vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in \(96.35\% \) of our cases.</description><identifier>ISSN: 2643-6809</identifier><identifier>EISSN: 2643-6817</identifier><identifier>DOI: 10.1145/3584706</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computer systems organization ; Hardware ; MATHEMATICS AND COMPUTING ; parameter optimization ; QAOA ; Quantum computation ; Quantum computing ; weighted MaxCut</subject><ispartof>ACM transactions on quantum computing (Print), 2023-09, Vol.4 (3), p.1-15</ispartof><rights>Association for Computing Machinery.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2196-78a06d97392e7d0f3f09c8cd5314fb05397863b9f020ff00c097e281037ff1043</citedby><cites>FETCH-LOGICAL-a2196-78a06d97392e7d0f3f09c8cd5314fb05397863b9f020ff00c097e281037ff1043</cites><orcidid>0000-0001-5636-555X ; 0000-0001-9924-2082 ; 0000-0002-7594-2735 ; 0000-0002-8657-2848 ; 0000-0002-9449-0498 ; 0000000199242082 ; 0000000275942735 ; 000000015636555X ; 0000000286572848 ; 0000000294490498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3584706$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,2276,27901,27902,40172,75971</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1974336$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaydulin, Ruslan</creatorcontrib><creatorcontrib>Lotshaw, Phillip C.</creatorcontrib><creatorcontrib>Larson, Jeffrey</creatorcontrib><creatorcontrib>Ostrowski, James</creatorcontrib><creatorcontrib>Humble, Travis S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut</title><title>ACM transactions on quantum computing (Print)</title><addtitle>ACM TQC</addtitle><description>Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single “typical” vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in \(96.35\% \) of our cases.</description><subject>Computer systems organization</subject><subject>Hardware</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>parameter optimization</subject><subject>QAOA</subject><subject>Quantum computation</subject><subject>Quantum computing</subject><subject>weighted MaxCut</subject><issn>2643-6809</issn><issn>2643-6817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo90M9LwzAUB_AgCo45vHsKXjxVX5I2aY6j-JPJFCYeS5YmLmKbkmQw_eutdO70vvA-PHhfhM4JXBOSFzesKHMB_AhNKM9Zxksijg8Z5CmaxfgJALQgjAKdoKcXFVRrkgl4FVQX7RCsD_h1q7q0bfG874PfuVYlg5d9cq37Ucn5DnuL34372CTT4Ge1q7bpDJ1Y9RXNbD-n6O3udlU9ZIvl_WM1X2SKEskzUSrgjRRMUiMasMyC1KVuCkZyu4aCSVFytpYWKFgLoEEKQ0sCTFhLIGdTdDne9TG5OmqXjN5o33VGp5pIkTPGB3Q1Ih18jMHYug_DF-G7JlD_VVXvqxrkxSiVbg_of_kL18FhfA</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>Shaydulin, Ruslan</creator><creator>Lotshaw, Phillip C.</creator><creator>Larson, Jeffrey</creator><creator>Ostrowski, James</creator><creator>Humble, Travis S.</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5636-555X</orcidid><orcidid>https://orcid.org/0000-0001-9924-2082</orcidid><orcidid>https://orcid.org/0000-0002-7594-2735</orcidid><orcidid>https://orcid.org/0000-0002-8657-2848</orcidid><orcidid>https://orcid.org/0000-0002-9449-0498</orcidid><orcidid>https://orcid.org/0000000199242082</orcidid><orcidid>https://orcid.org/0000000275942735</orcidid><orcidid>https://orcid.org/000000015636555X</orcidid><orcidid>https://orcid.org/0000000286572848</orcidid><orcidid>https://orcid.org/0000000294490498</orcidid></search><sort><creationdate>20230930</creationdate><title>Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut</title><author>Shaydulin, Ruslan ; Lotshaw, Phillip C. ; Larson, Jeffrey ; Ostrowski, James ; Humble, Travis S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2196-78a06d97392e7d0f3f09c8cd5314fb05397863b9f020ff00c097e281037ff1043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer systems organization</topic><topic>Hardware</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>parameter optimization</topic><topic>QAOA</topic><topic>Quantum computation</topic><topic>Quantum computing</topic><topic>weighted MaxCut</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaydulin, Ruslan</creatorcontrib><creatorcontrib>Lotshaw, Phillip C.</creatorcontrib><creatorcontrib>Larson, Jeffrey</creatorcontrib><creatorcontrib>Ostrowski, James</creatorcontrib><creatorcontrib>Humble, Travis S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACM transactions on quantum computing (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaydulin, Ruslan</au><au>Lotshaw, Phillip C.</au><au>Larson, Jeffrey</au><au>Ostrowski, James</au><au>Humble, Travis S.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut</atitle><jtitle>ACM transactions on quantum computing (Print)</jtitle><stitle>ACM TQC</stitle><date>2023-09-30</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2643-6809</issn><eissn>2643-6817</eissn><abstract>Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single “typical” vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in \(96.35\% \) of our cases.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3584706</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5636-555X</orcidid><orcidid>https://orcid.org/0000-0001-9924-2082</orcidid><orcidid>https://orcid.org/0000-0002-7594-2735</orcidid><orcidid>https://orcid.org/0000-0002-8657-2848</orcidid><orcidid>https://orcid.org/0000-0002-9449-0498</orcidid><orcidid>https://orcid.org/0000000199242082</orcidid><orcidid>https://orcid.org/0000000275942735</orcidid><orcidid>https://orcid.org/000000015636555X</orcidid><orcidid>https://orcid.org/0000000286572848</orcidid><orcidid>https://orcid.org/0000000294490498</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2643-6809
ispartof ACM transactions on quantum computing (Print), 2023-09, Vol.4 (3), p.1-15
issn 2643-6809
2643-6817
language eng
recordid cdi_osti_scitechconnect_1974336
source ACM Digital Library Complete
subjects Computer systems organization
Hardware
MATHEMATICS AND COMPUTING
parameter optimization
QAOA
Quantum computation
Quantum computing
weighted MaxCut
title Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Transfer%20for%20Quantum%20Approximate%20Optimization%20of%20Weighted%20MaxCut&rft.jtitle=ACM%20transactions%20on%20quantum%20computing%20(Print)&rft.au=Shaydulin,%20Ruslan&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-09-30&rft.volume=4&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2643-6809&rft.eissn=2643-6817&rft_id=info:doi/10.1145/3584706&rft_dat=%3Cacm_osti_%3E3584706%3C/acm_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true