Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut
Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However,...
Gespeichert in:
Veröffentlicht in: | ACM transactions on quantum computing (Print) 2023-09, Vol.4 (3), p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | ACM transactions on quantum computing (Print) |
container_volume | 4 |
creator | Shaydulin, Ruslan Lotshaw, Phillip C. Larson, Jeffrey Ostrowski, James Humble, Travis S. |
description | Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single “typical” vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in \(96.35\% \) of our cases. |
doi_str_mv | 10.1145/3584706 |
format | Article |
fullrecord | <record><control><sourceid>acm_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1974336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3584706</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2196-78a06d97392e7d0f3f09c8cd5314fb05397863b9f020ff00c097e281037ff1043</originalsourceid><addsrcrecordid>eNo90M9LwzAUB_AgCo45vHsKXjxVX5I2aY6j-JPJFCYeS5YmLmKbkmQw_eutdO70vvA-PHhfhM4JXBOSFzesKHMB_AhNKM9Zxksijg8Z5CmaxfgJALQgjAKdoKcXFVRrkgl4FVQX7RCsD_h1q7q0bfG874PfuVYlg5d9cq37Ucn5DnuL34372CTT4Ge1q7bpDJ1Y9RXNbD-n6O3udlU9ZIvl_WM1X2SKEskzUSrgjRRMUiMasMyC1KVuCkZyu4aCSVFytpYWKFgLoEEKQ0sCTFhLIGdTdDne9TG5OmqXjN5o33VGp5pIkTPGB3Q1Ih18jMHYug_DF-G7JlD_VVXvqxrkxSiVbg_of_kL18FhfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut</title><source>ACM Digital Library Complete</source><creator>Shaydulin, Ruslan ; Lotshaw, Phillip C. ; Larson, Jeffrey ; Ostrowski, James ; Humble, Travis S.</creator><creatorcontrib>Shaydulin, Ruslan ; Lotshaw, Phillip C. ; Larson, Jeffrey ; Ostrowski, James ; Humble, Travis S. ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single “typical” vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in \(96.35\% \) of our cases.</description><identifier>ISSN: 2643-6809</identifier><identifier>EISSN: 2643-6817</identifier><identifier>DOI: 10.1145/3584706</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computer systems organization ; Hardware ; MATHEMATICS AND COMPUTING ; parameter optimization ; QAOA ; Quantum computation ; Quantum computing ; weighted MaxCut</subject><ispartof>ACM transactions on quantum computing (Print), 2023-09, Vol.4 (3), p.1-15</ispartof><rights>Association for Computing Machinery.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2196-78a06d97392e7d0f3f09c8cd5314fb05397863b9f020ff00c097e281037ff1043</citedby><cites>FETCH-LOGICAL-a2196-78a06d97392e7d0f3f09c8cd5314fb05397863b9f020ff00c097e281037ff1043</cites><orcidid>0000-0001-5636-555X ; 0000-0001-9924-2082 ; 0000-0002-7594-2735 ; 0000-0002-8657-2848 ; 0000-0002-9449-0498 ; 0000000199242082 ; 0000000275942735 ; 000000015636555X ; 0000000286572848 ; 0000000294490498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3584706$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,2276,27901,27902,40172,75971</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1974336$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaydulin, Ruslan</creatorcontrib><creatorcontrib>Lotshaw, Phillip C.</creatorcontrib><creatorcontrib>Larson, Jeffrey</creatorcontrib><creatorcontrib>Ostrowski, James</creatorcontrib><creatorcontrib>Humble, Travis S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut</title><title>ACM transactions on quantum computing (Print)</title><addtitle>ACM TQC</addtitle><description>Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single “typical” vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in \(96.35\% \) of our cases.</description><subject>Computer systems organization</subject><subject>Hardware</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>parameter optimization</subject><subject>QAOA</subject><subject>Quantum computation</subject><subject>Quantum computing</subject><subject>weighted MaxCut</subject><issn>2643-6809</issn><issn>2643-6817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo90M9LwzAUB_AgCo45vHsKXjxVX5I2aY6j-JPJFCYeS5YmLmKbkmQw_eutdO70vvA-PHhfhM4JXBOSFzesKHMB_AhNKM9Zxksijg8Z5CmaxfgJALQgjAKdoKcXFVRrkgl4FVQX7RCsD_h1q7q0bfG874PfuVYlg5d9cq37Ucn5DnuL34372CTT4Ge1q7bpDJ1Y9RXNbD-n6O3udlU9ZIvl_WM1X2SKEskzUSrgjRRMUiMasMyC1KVuCkZyu4aCSVFytpYWKFgLoEEKQ0sCTFhLIGdTdDne9TG5OmqXjN5o33VGp5pIkTPGB3Q1Ih18jMHYug_DF-G7JlD_VVXvqxrkxSiVbg_of_kL18FhfA</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>Shaydulin, Ruslan</creator><creator>Lotshaw, Phillip C.</creator><creator>Larson, Jeffrey</creator><creator>Ostrowski, James</creator><creator>Humble, Travis S.</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5636-555X</orcidid><orcidid>https://orcid.org/0000-0001-9924-2082</orcidid><orcidid>https://orcid.org/0000-0002-7594-2735</orcidid><orcidid>https://orcid.org/0000-0002-8657-2848</orcidid><orcidid>https://orcid.org/0000-0002-9449-0498</orcidid><orcidid>https://orcid.org/0000000199242082</orcidid><orcidid>https://orcid.org/0000000275942735</orcidid><orcidid>https://orcid.org/000000015636555X</orcidid><orcidid>https://orcid.org/0000000286572848</orcidid><orcidid>https://orcid.org/0000000294490498</orcidid></search><sort><creationdate>20230930</creationdate><title>Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut</title><author>Shaydulin, Ruslan ; Lotshaw, Phillip C. ; Larson, Jeffrey ; Ostrowski, James ; Humble, Travis S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2196-78a06d97392e7d0f3f09c8cd5314fb05397863b9f020ff00c097e281037ff1043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer systems organization</topic><topic>Hardware</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>parameter optimization</topic><topic>QAOA</topic><topic>Quantum computation</topic><topic>Quantum computing</topic><topic>weighted MaxCut</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaydulin, Ruslan</creatorcontrib><creatorcontrib>Lotshaw, Phillip C.</creatorcontrib><creatorcontrib>Larson, Jeffrey</creatorcontrib><creatorcontrib>Ostrowski, James</creatorcontrib><creatorcontrib>Humble, Travis S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACM transactions on quantum computing (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaydulin, Ruslan</au><au>Lotshaw, Phillip C.</au><au>Larson, Jeffrey</au><au>Ostrowski, James</au><au>Humble, Travis S.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut</atitle><jtitle>ACM transactions on quantum computing (Print)</jtitle><stitle>ACM TQC</stitle><date>2023-09-30</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2643-6809</issn><eissn>2643-6817</eissn><abstract>Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single “typical” vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in \(96.35\% \) of our cases.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3584706</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5636-555X</orcidid><orcidid>https://orcid.org/0000-0001-9924-2082</orcidid><orcidid>https://orcid.org/0000-0002-7594-2735</orcidid><orcidid>https://orcid.org/0000-0002-8657-2848</orcidid><orcidid>https://orcid.org/0000-0002-9449-0498</orcidid><orcidid>https://orcid.org/0000000199242082</orcidid><orcidid>https://orcid.org/0000000275942735</orcidid><orcidid>https://orcid.org/000000015636555X</orcidid><orcidid>https://orcid.org/0000000286572848</orcidid><orcidid>https://orcid.org/0000000294490498</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2643-6809 |
ispartof | ACM transactions on quantum computing (Print), 2023-09, Vol.4 (3), p.1-15 |
issn | 2643-6809 2643-6817 |
language | eng |
recordid | cdi_osti_scitechconnect_1974336 |
source | ACM Digital Library Complete |
subjects | Computer systems organization Hardware MATHEMATICS AND COMPUTING parameter optimization QAOA Quantum computation Quantum computing weighted MaxCut |
title | Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Transfer%20for%20Quantum%20Approximate%20Optimization%20of%20Weighted%20MaxCut&rft.jtitle=ACM%20transactions%20on%20quantum%20computing%20(Print)&rft.au=Shaydulin,%20Ruslan&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-09-30&rft.volume=4&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2643-6809&rft.eissn=2643-6817&rft_id=info:doi/10.1145/3584706&rft_dat=%3Cacm_osti_%3E3584706%3C/acm_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |