An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications
A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon as...
Gespeichert in:
Veröffentlicht in: | Plant, cell and environment cell and environment, 2023-05, Vol.46 (5), p.1540-1561 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1561 |
---|---|
container_issue | 5 |
container_start_page | 1540 |
container_title | Plant, cell and environment |
container_volume | 46 |
creator | Gu, Lianhong Grodzinski, Bernard Han, Jimei Marie, Telesphore Zhang, Yong‐Jiang Song, Yang C. Sun, Ying |
description | A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.
Summary statement
How redox reactions control photosynthetic electron transport (PET) is key to understanding PET regulation and linkage between light and carbon reactions. A steady‐state photochemical model of redox control of PET is developed and tested, filling a major gap in complete modelling of photosynthesis. |
doi_str_mv | 10.1111/pce.14563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1973313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795198038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4153-add588979a88e279d28eacfb589cbd7003d2d542eea5bd7ef6d0a8580e4f713</originalsourceid><addsrcrecordid>eNp1kc9qFTEUh4Mo9lpd-AISdKOLaZPJZJIsy6X-gYKC7kNucsabMjcZkwzt7HwEH8Cn80mMd6qLgtkccvjOBz9-CD2n5IzWdz5ZOKMd79kDtKGs5w0jHXmINoR2pBFC0RP0JOdrQupCqMfohPWiJ5SpDfp5ETDcTmNMpsS04FzAuOXX9x-5mAI4gYu3-BAdjDgOeNrHEvMSyh6Kt3j0AUzCMIItKQZckgl5iqngISY8Z8A-YBsP0wjVdbTUk6_3TNnnI79L0Thspmn01hQfQ36KHg1mzPDsbp6iz28vv2zfN1cf333YXlw1tqOcNcY5LqUSykgJrVCulWDssONS2Z0ThDDXOt61AIbXPwy9I0ZySaAbBGWn6OVqjbl4na0vYPc2hlBTaaoEY5RV6PUKTSl-myEXffDZ1jwmQJyzboXgfe1A8Iq-uodexzmFGqBSilMlCZOVerNSNsWcEwx6Sv5g0qIp0X9a1bVVfWy1si_ujPPuAO4f-bfGCpyvwI0fYfm_SX_aXq7K3yW6sL8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795198038</pqid></control><display><type>article</type><title>An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Lianhong ; Grodzinski, Bernard ; Han, Jimei ; Marie, Telesphore ; Zhang, Yong‐Jiang ; Song, Yang C. ; Sun, Ying</creator><creatorcontrib>Gu, Lianhong ; Grodzinski, Bernard ; Han, Jimei ; Marie, Telesphore ; Zhang, Yong‐Jiang ; Song, Yang C. ; Sun, Ying ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.
Summary statement
How redox reactions control photosynthetic electron transport (PET) is key to understanding PET regulation and linkage between light and carbon reactions. A steady‐state photochemical model of redox control of PET is developed and tested, filling a major gap in complete modelling of photosynthesis.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14563</identifier><identifier>PMID: 36760139</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Chlorophyll ; Chlorophyll - chemistry ; cytochrome b6f complex ; Cytochrome b6f Complex - metabolism ; Cytochromes ; Electron Transport ; Fluorimetry ; Fluorometry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mathematical models ; Oxidation ; Oxidation-Reduction ; Photochemical reactions ; Photochemicals ; Photochemistry ; Photosynthesis ; photosynthesis model ; Photosystem I Protein Complex - metabolism ; Photosystem II ; Photosystem II Protein Complex - metabolism ; photosystems ; Plant stress ; Plastoquinol ; Plastoquinone ; Rate constants ; Redox reactions ; Remote sensing</subject><ispartof>Plant, cell and environment, 2023-05, Vol.46 (5), p.1540-1561</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4153-add588979a88e279d28eacfb589cbd7003d2d542eea5bd7ef6d0a8580e4f713</citedby><cites>FETCH-LOGICAL-c4153-add588979a88e279d28eacfb589cbd7003d2d542eea5bd7ef6d0a8580e4f713</cites><orcidid>0000-0001-7466-8511 ; 0000-0002-9819-1241 ; 0000-0001-5637-3015 ; 0000-0001-5756-8738 ; 0000-0002-3493-3699 ; 0000000157568738 ; 0000000174668511 ; 0000000298191241 ; 0000000234933699 ; 0000000156373015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.14563$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.14563$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36760139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1973313$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Lianhong</creatorcontrib><creatorcontrib>Grodzinski, Bernard</creatorcontrib><creatorcontrib>Han, Jimei</creatorcontrib><creatorcontrib>Marie, Telesphore</creatorcontrib><creatorcontrib>Zhang, Yong‐Jiang</creatorcontrib><creatorcontrib>Song, Yang C.</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.
Summary statement
How redox reactions control photosynthetic electron transport (PET) is key to understanding PET regulation and linkage between light and carbon reactions. A steady‐state photochemical model of redox control of PET is developed and tested, filling a major gap in complete modelling of photosynthesis.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Chlorophyll</subject><subject>Chlorophyll - chemistry</subject><subject>cytochrome b6f complex</subject><subject>Cytochrome b6f Complex - metabolism</subject><subject>Cytochromes</subject><subject>Electron Transport</subject><subject>Fluorimetry</subject><subject>Fluorometry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mathematical models</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photosynthesis</subject><subject>photosynthesis model</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>photosystems</subject><subject>Plant stress</subject><subject>Plastoquinol</subject><subject>Plastoquinone</subject><subject>Rate constants</subject><subject>Redox reactions</subject><subject>Remote sensing</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9qFTEUh4Mo9lpd-AISdKOLaZPJZJIsy6X-gYKC7kNucsabMjcZkwzt7HwEH8Cn80mMd6qLgtkccvjOBz9-CD2n5IzWdz5ZOKMd79kDtKGs5w0jHXmINoR2pBFC0RP0JOdrQupCqMfohPWiJ5SpDfp5ETDcTmNMpsS04FzAuOXX9x-5mAI4gYu3-BAdjDgOeNrHEvMSyh6Kt3j0AUzCMIItKQZckgl5iqngISY8Z8A-YBsP0wjVdbTUk6_3TNnnI79L0Thspmn01hQfQ36KHg1mzPDsbp6iz28vv2zfN1cf333YXlw1tqOcNcY5LqUSykgJrVCulWDssONS2Z0ThDDXOt61AIbXPwy9I0ZySaAbBGWn6OVqjbl4na0vYPc2hlBTaaoEY5RV6PUKTSl-myEXffDZ1jwmQJyzboXgfe1A8Iq-uodexzmFGqBSilMlCZOVerNSNsWcEwx6Sv5g0qIp0X9a1bVVfWy1si_ujPPuAO4f-bfGCpyvwI0fYfm_SX_aXq7K3yW6sL8</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Gu, Lianhong</creator><creator>Grodzinski, Bernard</creator><creator>Han, Jimei</creator><creator>Marie, Telesphore</creator><creator>Zhang, Yong‐Jiang</creator><creator>Song, Yang C.</creator><creator>Sun, Ying</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7466-8511</orcidid><orcidid>https://orcid.org/0000-0002-9819-1241</orcidid><orcidid>https://orcid.org/0000-0001-5637-3015</orcidid><orcidid>https://orcid.org/0000-0001-5756-8738</orcidid><orcidid>https://orcid.org/0000-0002-3493-3699</orcidid><orcidid>https://orcid.org/0000000157568738</orcidid><orcidid>https://orcid.org/0000000174668511</orcidid><orcidid>https://orcid.org/0000000298191241</orcidid><orcidid>https://orcid.org/0000000234933699</orcidid><orcidid>https://orcid.org/0000000156373015</orcidid></search><sort><creationdate>202305</creationdate><title>An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications</title><author>Gu, Lianhong ; Grodzinski, Bernard ; Han, Jimei ; Marie, Telesphore ; Zhang, Yong‐Jiang ; Song, Yang C. ; Sun, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4153-add588979a88e279d28eacfb589cbd7003d2d542eea5bd7ef6d0a8580e4f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Chlorophyll</topic><topic>Chlorophyll - chemistry</topic><topic>cytochrome b6f complex</topic><topic>Cytochrome b6f Complex - metabolism</topic><topic>Cytochromes</topic><topic>Electron Transport</topic><topic>Fluorimetry</topic><topic>Fluorometry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mathematical models</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photosynthesis</topic><topic>photosynthesis model</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>photosystems</topic><topic>Plant stress</topic><topic>Plastoquinol</topic><topic>Plastoquinone</topic><topic>Rate constants</topic><topic>Redox reactions</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Lianhong</creatorcontrib><creatorcontrib>Grodzinski, Bernard</creatorcontrib><creatorcontrib>Han, Jimei</creatorcontrib><creatorcontrib>Marie, Telesphore</creatorcontrib><creatorcontrib>Zhang, Yong‐Jiang</creatorcontrib><creatorcontrib>Song, Yang C.</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Lianhong</au><au>Grodzinski, Bernard</au><au>Han, Jimei</au><au>Marie, Telesphore</au><au>Zhang, Yong‐Jiang</au><au>Song, Yang C.</au><au>Sun, Ying</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2023-05</date><risdate>2023</risdate><volume>46</volume><issue>5</issue><spage>1540</spage><epage>1561</epage><pages>1540-1561</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.
Summary statement
How redox reactions control photosynthetic electron transport (PET) is key to understanding PET regulation and linkage between light and carbon reactions. A steady‐state photochemical model of redox control of PET is developed and tested, filling a major gap in complete modelling of photosynthesis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36760139</pmid><doi>10.1111/pce.14563</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7466-8511</orcidid><orcidid>https://orcid.org/0000-0002-9819-1241</orcidid><orcidid>https://orcid.org/0000-0001-5637-3015</orcidid><orcidid>https://orcid.org/0000-0001-5756-8738</orcidid><orcidid>https://orcid.org/0000-0002-3493-3699</orcidid><orcidid>https://orcid.org/0000000157568738</orcidid><orcidid>https://orcid.org/0000000174668511</orcidid><orcidid>https://orcid.org/0000000298191241</orcidid><orcidid>https://orcid.org/0000000234933699</orcidid><orcidid>https://orcid.org/0000000156373015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7791 |
ispartof | Plant, cell and environment, 2023-05, Vol.46 (5), p.1540-1561 |
issn | 0140-7791 1365-3040 |
language | eng |
recordid | cdi_osti_scitechconnect_1973313 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | BASIC BIOLOGICAL SCIENCES Chlorophyll Chlorophyll - chemistry cytochrome b6f complex Cytochrome b6f Complex - metabolism Cytochromes Electron Transport Fluorimetry Fluorometry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Mathematical models Oxidation Oxidation-Reduction Photochemical reactions Photochemicals Photochemistry Photosynthesis photosynthesis model Photosystem I Protein Complex - metabolism Photosystem II Photosystem II Protein Complex - metabolism photosystems Plant stress Plastoquinol Plastoquinone Rate constants Redox reactions Remote sensing |
title | An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exploratory%20steady%E2%80%90state%20redox%20model%20of%20photosynthetic%20linear%20electron%20transport%20for%20use%20in%20complete%20modelling%20of%20photosynthesis%20for%20broad%20applications&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Gu,%20Lianhong&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-05&rft.volume=46&rft.issue=5&rft.spage=1540&rft.epage=1561&rft.pages=1540-1561&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14563&rft_dat=%3Cproquest_osti_%3E2795198038%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795198038&rft_id=info:pmid/36760139&rfr_iscdi=true |