An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications

A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2023-05, Vol.46 (5), p.1540-1561
Hauptverfasser: Gu, Lianhong, Grodzinski, Bernard, Han, Jimei, Marie, Telesphore, Zhang, Yong‐Jiang, Song, Yang C., Sun, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1561
container_issue 5
container_start_page 1540
container_title Plant, cell and environment
container_volume 46
creator Gu, Lianhong
Grodzinski, Bernard
Han, Jimei
Marie, Telesphore
Zhang, Yong‐Jiang
Song, Yang C.
Sun, Ying
description A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research. Summary statement How redox reactions control photosynthetic electron transport (PET) is key to understanding PET regulation and linkage between light and carbon reactions. A steady‐state photochemical model of redox control of PET is developed and tested, filling a major gap in complete modelling of photosynthesis.
doi_str_mv 10.1111/pce.14563
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1973313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795198038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4153-add588979a88e279d28eacfb589cbd7003d2d542eea5bd7ef6d0a8580e4f713</originalsourceid><addsrcrecordid>eNp1kc9qFTEUh4Mo9lpd-AISdKOLaZPJZJIsy6X-gYKC7kNucsabMjcZkwzt7HwEH8Cn80mMd6qLgtkccvjOBz9-CD2n5IzWdz5ZOKMd79kDtKGs5w0jHXmINoR2pBFC0RP0JOdrQupCqMfohPWiJ5SpDfp5ETDcTmNMpsS04FzAuOXX9x-5mAI4gYu3-BAdjDgOeNrHEvMSyh6Kt3j0AUzCMIItKQZckgl5iqngISY8Z8A-YBsP0wjVdbTUk6_3TNnnI79L0Thspmn01hQfQ36KHg1mzPDsbp6iz28vv2zfN1cf333YXlw1tqOcNcY5LqUSykgJrVCulWDssONS2Z0ThDDXOt61AIbXPwy9I0ZySaAbBGWn6OVqjbl4na0vYPc2hlBTaaoEY5RV6PUKTSl-myEXffDZ1jwmQJyzboXgfe1A8Iq-uodexzmFGqBSilMlCZOVerNSNsWcEwx6Sv5g0qIp0X9a1bVVfWy1si_ujPPuAO4f-bfGCpyvwI0fYfm_SX_aXq7K3yW6sL8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795198038</pqid></control><display><type>article</type><title>An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Lianhong ; Grodzinski, Bernard ; Han, Jimei ; Marie, Telesphore ; Zhang, Yong‐Jiang ; Song, Yang C. ; Sun, Ying</creator><creatorcontrib>Gu, Lianhong ; Grodzinski, Bernard ; Han, Jimei ; Marie, Telesphore ; Zhang, Yong‐Jiang ; Song, Yang C. ; Sun, Ying ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research. Summary statement How redox reactions control photosynthetic electron transport (PET) is key to understanding PET regulation and linkage between light and carbon reactions. A steady‐state photochemical model of redox control of PET is developed and tested, filling a major gap in complete modelling of photosynthesis.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14563</identifier><identifier>PMID: 36760139</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Chlorophyll ; Chlorophyll - chemistry ; cytochrome b6f complex ; Cytochrome b6f Complex - metabolism ; Cytochromes ; Electron Transport ; Fluorimetry ; Fluorometry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mathematical models ; Oxidation ; Oxidation-Reduction ; Photochemical reactions ; Photochemicals ; Photochemistry ; Photosynthesis ; photosynthesis model ; Photosystem I Protein Complex - metabolism ; Photosystem II ; Photosystem II Protein Complex - metabolism ; photosystems ; Plant stress ; Plastoquinol ; Plastoquinone ; Rate constants ; Redox reactions ; Remote sensing</subject><ispartof>Plant, cell and environment, 2023-05, Vol.46 (5), p.1540-1561</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Plant, Cell &amp; Environment published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4153-add588979a88e279d28eacfb589cbd7003d2d542eea5bd7ef6d0a8580e4f713</citedby><cites>FETCH-LOGICAL-c4153-add588979a88e279d28eacfb589cbd7003d2d542eea5bd7ef6d0a8580e4f713</cites><orcidid>0000-0001-7466-8511 ; 0000-0002-9819-1241 ; 0000-0001-5637-3015 ; 0000-0001-5756-8738 ; 0000-0002-3493-3699 ; 0000000157568738 ; 0000000174668511 ; 0000000298191241 ; 0000000234933699 ; 0000000156373015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.14563$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.14563$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36760139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1973313$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Lianhong</creatorcontrib><creatorcontrib>Grodzinski, Bernard</creatorcontrib><creatorcontrib>Han, Jimei</creatorcontrib><creatorcontrib>Marie, Telesphore</creatorcontrib><creatorcontrib>Zhang, Yong‐Jiang</creatorcontrib><creatorcontrib>Song, Yang C.</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research. Summary statement How redox reactions control photosynthetic electron transport (PET) is key to understanding PET regulation and linkage between light and carbon reactions. A steady‐state photochemical model of redox control of PET is developed and tested, filling a major gap in complete modelling of photosynthesis.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Chlorophyll</subject><subject>Chlorophyll - chemistry</subject><subject>cytochrome b6f complex</subject><subject>Cytochrome b6f Complex - metabolism</subject><subject>Cytochromes</subject><subject>Electron Transport</subject><subject>Fluorimetry</subject><subject>Fluorometry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mathematical models</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photosynthesis</subject><subject>photosynthesis model</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>photosystems</subject><subject>Plant stress</subject><subject>Plastoquinol</subject><subject>Plastoquinone</subject><subject>Rate constants</subject><subject>Redox reactions</subject><subject>Remote sensing</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9qFTEUh4Mo9lpd-AISdKOLaZPJZJIsy6X-gYKC7kNucsabMjcZkwzt7HwEH8Cn80mMd6qLgtkccvjOBz9-CD2n5IzWdz5ZOKMd79kDtKGs5w0jHXmINoR2pBFC0RP0JOdrQupCqMfohPWiJ5SpDfp5ETDcTmNMpsS04FzAuOXX9x-5mAI4gYu3-BAdjDgOeNrHEvMSyh6Kt3j0AUzCMIItKQZckgl5iqngISY8Z8A-YBsP0wjVdbTUk6_3TNnnI79L0Thspmn01hQfQ36KHg1mzPDsbp6iz28vv2zfN1cf333YXlw1tqOcNcY5LqUSykgJrVCulWDssONS2Z0ThDDXOt61AIbXPwy9I0ZySaAbBGWn6OVqjbl4na0vYPc2hlBTaaoEY5RV6PUKTSl-myEXffDZ1jwmQJyzboXgfe1A8Iq-uodexzmFGqBSilMlCZOVerNSNsWcEwx6Sv5g0qIp0X9a1bVVfWy1si_ujPPuAO4f-bfGCpyvwI0fYfm_SX_aXq7K3yW6sL8</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Gu, Lianhong</creator><creator>Grodzinski, Bernard</creator><creator>Han, Jimei</creator><creator>Marie, Telesphore</creator><creator>Zhang, Yong‐Jiang</creator><creator>Song, Yang C.</creator><creator>Sun, Ying</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7466-8511</orcidid><orcidid>https://orcid.org/0000-0002-9819-1241</orcidid><orcidid>https://orcid.org/0000-0001-5637-3015</orcidid><orcidid>https://orcid.org/0000-0001-5756-8738</orcidid><orcidid>https://orcid.org/0000-0002-3493-3699</orcidid><orcidid>https://orcid.org/0000000157568738</orcidid><orcidid>https://orcid.org/0000000174668511</orcidid><orcidid>https://orcid.org/0000000298191241</orcidid><orcidid>https://orcid.org/0000000234933699</orcidid><orcidid>https://orcid.org/0000000156373015</orcidid></search><sort><creationdate>202305</creationdate><title>An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications</title><author>Gu, Lianhong ; Grodzinski, Bernard ; Han, Jimei ; Marie, Telesphore ; Zhang, Yong‐Jiang ; Song, Yang C. ; Sun, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4153-add588979a88e279d28eacfb589cbd7003d2d542eea5bd7ef6d0a8580e4f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Chlorophyll</topic><topic>Chlorophyll - chemistry</topic><topic>cytochrome b6f complex</topic><topic>Cytochrome b6f Complex - metabolism</topic><topic>Cytochromes</topic><topic>Electron Transport</topic><topic>Fluorimetry</topic><topic>Fluorometry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mathematical models</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photosynthesis</topic><topic>photosynthesis model</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>photosystems</topic><topic>Plant stress</topic><topic>Plastoquinol</topic><topic>Plastoquinone</topic><topic>Rate constants</topic><topic>Redox reactions</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Lianhong</creatorcontrib><creatorcontrib>Grodzinski, Bernard</creatorcontrib><creatorcontrib>Han, Jimei</creatorcontrib><creatorcontrib>Marie, Telesphore</creatorcontrib><creatorcontrib>Zhang, Yong‐Jiang</creatorcontrib><creatorcontrib>Song, Yang C.</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Lianhong</au><au>Grodzinski, Bernard</au><au>Han, Jimei</au><au>Marie, Telesphore</au><au>Zhang, Yong‐Jiang</au><au>Song, Yang C.</au><au>Sun, Ying</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2023-05</date><risdate>2023</risdate><volume>46</volume><issue>5</issue><spage>1540</spage><epage>1561</epage><pages>1540-1561</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research. Summary statement How redox reactions control photosynthetic electron transport (PET) is key to understanding PET regulation and linkage between light and carbon reactions. A steady‐state photochemical model of redox control of PET is developed and tested, filling a major gap in complete modelling of photosynthesis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36760139</pmid><doi>10.1111/pce.14563</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7466-8511</orcidid><orcidid>https://orcid.org/0000-0002-9819-1241</orcidid><orcidid>https://orcid.org/0000-0001-5637-3015</orcidid><orcidid>https://orcid.org/0000-0001-5756-8738</orcidid><orcidid>https://orcid.org/0000-0002-3493-3699</orcidid><orcidid>https://orcid.org/0000000157568738</orcidid><orcidid>https://orcid.org/0000000174668511</orcidid><orcidid>https://orcid.org/0000000298191241</orcidid><orcidid>https://orcid.org/0000000234933699</orcidid><orcidid>https://orcid.org/0000000156373015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2023-05, Vol.46 (5), p.1540-1561
issn 0140-7791
1365-3040
language eng
recordid cdi_osti_scitechconnect_1973313
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects BASIC BIOLOGICAL SCIENCES
Chlorophyll
Chlorophyll - chemistry
cytochrome b6f complex
Cytochrome b6f Complex - metabolism
Cytochromes
Electron Transport
Fluorimetry
Fluorometry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mathematical models
Oxidation
Oxidation-Reduction
Photochemical reactions
Photochemicals
Photochemistry
Photosynthesis
photosynthesis model
Photosystem I Protein Complex - metabolism
Photosystem II
Photosystem II Protein Complex - metabolism
photosystems
Plant stress
Plastoquinol
Plastoquinone
Rate constants
Redox reactions
Remote sensing
title An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exploratory%20steady%E2%80%90state%20redox%20model%20of%20photosynthetic%20linear%20electron%20transport%20for%20use%20in%20complete%20modelling%20of%20photosynthesis%20for%20broad%20applications&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Gu,%20Lianhong&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-05&rft.volume=46&rft.issue=5&rft.spage=1540&rft.epage=1561&rft.pages=1540-1561&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14563&rft_dat=%3Cproquest_osti_%3E2795198038%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795198038&rft_id=info:pmid/36760139&rfr_iscdi=true