Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer
Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using f...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-01, Vol.18 (1), p.29-35 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Nature nanotechnology |
container_volume | 18 |
creator | Sood, Aditya Haber, Jonah B. Carlström, Johan Peterson, Elizabeth A. Barre, Elyse Georgaras, Johnathan D. Reid, Alexander H. M. Shen, Xiaozhe Zajac, Marc E. Regan, Emma C. Yang, Jie Taniguchi, Takashi Watanabe, Kenji Wang, Feng Wang, Xijie Neaton, Jeffrey B. Heinz, Tony F. Lindenberg, Aaron M. da Jornada, Felipe H. Raja, Archana |
description | Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe
2
/WS
2
monolayers. Following the selective excitation of WSe
2
, we measure the concurrent heating of both WSe
2
and WS
2
on a picosecond timescale—an observation that is not explained by phonon transport across the interface. Using first-principles calculations, we identify a fast channel involving an electronic state hybridized across the heterostructure, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons are emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Taken together, our work indicates strong electron–phonon coupling via layer-hybridized electronic states—a novel route to control energy transport across atomic junctions.
Femtosecond electron diffraction and ab initio theory unravel ultrafast lattice dynamics in photoexcited two-dimensional heterostructures during charge transfer. |
doi_str_mv | 10.1038/s41565-022-01253-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1972268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757160197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-a894b3dbb169eebf6b6e909ca22a815afb031926ed8f62bfbf9cd02a6f689e0b3</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2A_9Ay7MRDdupvIxMLDUxo8mTdzUNQHmcIdmLlyBSdN_L7dTa-LCFYTz8J5z3hehNwRfEMzkxzIQLniPKe0xoZz14zN0SsZB9owp_vzpLscTdFbKLcacKjq8RCdM8IFJSU_R_DlMIYOrIUWzdIc5xRQ72IdS2ksXYlfvUj-FPcSyITNUyKnUvLq6ZihdzWG3gwxTZ--7danZeFNq52aTd9CqJhYP-RV64c1S4PXjeY5-fv1yc_m9v_7x7ery03XvhkHU3kg1WDZZS4QCsF5YAQorZyg1knDjLWZEUQGT9IJab71yE6ZGeCEVYMvO0btNt40YdHGhgptdirHtqIkaKRWyQR826JDTrxVK1W1hB8tiIqS1aDrykQjc8Ia-_we9TWtuRhwpoeTIlVKNohvlmjUlg9eHHPYm32uC9TEsvYWlW1j6ISx9lH77KL3aPUxPX_6k0wC2AaWVYvP4b-__yP4G6F-h8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769875999</pqid></control><display><type>article</type><title>Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sood, Aditya ; Haber, Jonah B. ; Carlström, Johan ; Peterson, Elizabeth A. ; Barre, Elyse ; Georgaras, Johnathan D. ; Reid, Alexander H. M. ; Shen, Xiaozhe ; Zajac, Marc E. ; Regan, Emma C. ; Yang, Jie ; Taniguchi, Takashi ; Watanabe, Kenji ; Wang, Feng ; Wang, Xijie ; Neaton, Jeffrey B. ; Heinz, Tony F. ; Lindenberg, Aaron M. ; da Jornada, Felipe H. ; Raja, Archana</creator><creatorcontrib>Sood, Aditya ; Haber, Jonah B. ; Carlström, Johan ; Peterson, Elizabeth A. ; Barre, Elyse ; Georgaras, Johnathan D. ; Reid, Alexander H. M. ; Shen, Xiaozhe ; Zajac, Marc E. ; Regan, Emma C. ; Yang, Jie ; Taniguchi, Takashi ; Watanabe, Kenji ; Wang, Feng ; Wang, Xijie ; Neaton, Jeffrey B. ; Heinz, Tony F. ; Lindenberg, Aaron M. ; da Jornada, Felipe H. ; Raja, Archana ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe
2
/WS
2
monolayers. Following the selective excitation of WSe
2
, we measure the concurrent heating of both WSe
2
and WS
2
on a picosecond timescale—an observation that is not explained by phonon transport across the interface. Using first-principles calculations, we identify a fast channel involving an electronic state hybridized across the heterostructure, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons are emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Taken together, our work indicates strong electron–phonon coupling via layer-hybridized electronic states—a novel route to control energy transport across atomic junctions.
Femtosecond electron diffraction and ab initio theory unravel ultrafast lattice dynamics in photoexcited two-dimensional heterostructures during charge transfer.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-022-01253-7</identifier><identifier>PMID: 36543882</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/925 ; 639/925/357/1018 ; Charge transfer ; Chemistry and Materials Science ; Coupling ; Electron diffraction ; Electron states ; Electrons ; First principles ; Heating ; Heterostructures ; Interlayers ; Letter ; Materials Science ; Nanoscience ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanotechnology ; Nanotechnology and Microengineering ; Phonons ; technology ; Time ; two-dimensional materials</subject><ispartof>Nature nanotechnology, 2023-01, Vol.18 (1), p.29-35</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-a894b3dbb169eebf6b6e909ca22a815afb031926ed8f62bfbf9cd02a6f689e0b3</citedby><cites>FETCH-LOGICAL-c446t-a894b3dbb169eebf6b6e909ca22a815afb031926ed8f62bfbf9cd02a6f689e0b3</cites><orcidid>0000-0002-4319-666X ; 0000-0002-6844-608X ; 0000-0001-8883-3741 ; 0000-0001-8906-549X ; 0000-0003-2548-6636 ; 0000-0001-6712-7151 ; 0000-0001-5379-3604 ; 0000-0002-9100-6031 ; 0000-0002-1467-3105 ; 0000-0003-3324-4709 ; 0000-0002-7587-295X ; 0000-0003-3701-8119 ; 0000-0003-3233-7161 ; 0000-0001-8369-6194 ; 0000-0001-7585-6135 ; 0000000175856135 ; 0000000214673105 ; 0000000325486636 ; 000000024319666X ; 0000000337018119 ; 0000000332337161 ; 0000000153793604 ; 0000000188833741 ; 0000000291006031 ; 0000000167127151 ; 0000000183696194 ; 000000026844608X ; 0000000333244709 ; 000000027587295X ; 000000018906549X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-022-01253-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-022-01253-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36543882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1972268$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sood, Aditya</creatorcontrib><creatorcontrib>Haber, Jonah B.</creatorcontrib><creatorcontrib>Carlström, Johan</creatorcontrib><creatorcontrib>Peterson, Elizabeth A.</creatorcontrib><creatorcontrib>Barre, Elyse</creatorcontrib><creatorcontrib>Georgaras, Johnathan D.</creatorcontrib><creatorcontrib>Reid, Alexander H. M.</creatorcontrib><creatorcontrib>Shen, Xiaozhe</creatorcontrib><creatorcontrib>Zajac, Marc E.</creatorcontrib><creatorcontrib>Regan, Emma C.</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Wang, Xijie</creatorcontrib><creatorcontrib>Neaton, Jeffrey B.</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>da Jornada, Felipe H.</creatorcontrib><creatorcontrib>Raja, Archana</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe
2
/WS
2
monolayers. Following the selective excitation of WSe
2
, we measure the concurrent heating of both WSe
2
and WS
2
on a picosecond timescale—an observation that is not explained by phonon transport across the interface. Using first-principles calculations, we identify a fast channel involving an electronic state hybridized across the heterostructure, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons are emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Taken together, our work indicates strong electron–phonon coupling via layer-hybridized electronic states—a novel route to control energy transport across atomic junctions.
Femtosecond electron diffraction and ab initio theory unravel ultrafast lattice dynamics in photoexcited two-dimensional heterostructures during charge transfer.</description><subject>140/125</subject><subject>639/925</subject><subject>639/925/357/1018</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Electron diffraction</subject><subject>Electron states</subject><subject>Electrons</subject><subject>First principles</subject><subject>Heating</subject><subject>Heterostructures</subject><subject>Interlayers</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Nanoscience</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Phonons</subject><subject>technology</subject><subject>Time</subject><subject>two-dimensional materials</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vFSEUhonR2A_9Ay7MRDdupvIxMLDUxo8mTdzUNQHmcIdmLlyBSdN_L7dTa-LCFYTz8J5z3hehNwRfEMzkxzIQLniPKe0xoZz14zN0SsZB9owp_vzpLscTdFbKLcacKjq8RCdM8IFJSU_R_DlMIYOrIUWzdIc5xRQ72IdS2ksXYlfvUj-FPcSyITNUyKnUvLq6ZihdzWG3gwxTZ--7danZeFNq52aTd9CqJhYP-RV64c1S4PXjeY5-fv1yc_m9v_7x7ery03XvhkHU3kg1WDZZS4QCsF5YAQorZyg1knDjLWZEUQGT9IJab71yE6ZGeCEVYMvO0btNt40YdHGhgptdirHtqIkaKRWyQR826JDTrxVK1W1hB8tiIqS1aDrykQjc8Ia-_we9TWtuRhwpoeTIlVKNohvlmjUlg9eHHPYm32uC9TEsvYWlW1j6ISx9lH77KL3aPUxPX_6k0wC2AaWVYvP4b-__yP4G6F-h8w</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Sood, Aditya</creator><creator>Haber, Jonah B.</creator><creator>Carlström, Johan</creator><creator>Peterson, Elizabeth A.</creator><creator>Barre, Elyse</creator><creator>Georgaras, Johnathan D.</creator><creator>Reid, Alexander H. M.</creator><creator>Shen, Xiaozhe</creator><creator>Zajac, Marc E.</creator><creator>Regan, Emma C.</creator><creator>Yang, Jie</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Wang, Feng</creator><creator>Wang, Xijie</creator><creator>Neaton, Jeffrey B.</creator><creator>Heinz, Tony F.</creator><creator>Lindenberg, Aaron M.</creator><creator>da Jornada, Felipe H.</creator><creator>Raja, Archana</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4319-666X</orcidid><orcidid>https://orcid.org/0000-0002-6844-608X</orcidid><orcidid>https://orcid.org/0000-0001-8883-3741</orcidid><orcidid>https://orcid.org/0000-0001-8906-549X</orcidid><orcidid>https://orcid.org/0000-0003-2548-6636</orcidid><orcidid>https://orcid.org/0000-0001-6712-7151</orcidid><orcidid>https://orcid.org/0000-0001-5379-3604</orcidid><orcidid>https://orcid.org/0000-0002-9100-6031</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3324-4709</orcidid><orcidid>https://orcid.org/0000-0002-7587-295X</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-3233-7161</orcidid><orcidid>https://orcid.org/0000-0001-8369-6194</orcidid><orcidid>https://orcid.org/0000-0001-7585-6135</orcidid><orcidid>https://orcid.org/0000000175856135</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid><orcidid>https://orcid.org/0000000325486636</orcidid><orcidid>https://orcid.org/000000024319666X</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000332337161</orcidid><orcidid>https://orcid.org/0000000153793604</orcidid><orcidid>https://orcid.org/0000000188833741</orcidid><orcidid>https://orcid.org/0000000291006031</orcidid><orcidid>https://orcid.org/0000000167127151</orcidid><orcidid>https://orcid.org/0000000183696194</orcidid><orcidid>https://orcid.org/000000026844608X</orcidid><orcidid>https://orcid.org/0000000333244709</orcidid><orcidid>https://orcid.org/000000027587295X</orcidid><orcidid>https://orcid.org/000000018906549X</orcidid></search><sort><creationdate>20230101</creationdate><title>Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer</title><author>Sood, Aditya ; Haber, Jonah B. ; Carlström, Johan ; Peterson, Elizabeth A. ; Barre, Elyse ; Georgaras, Johnathan D. ; Reid, Alexander H. M. ; Shen, Xiaozhe ; Zajac, Marc E. ; Regan, Emma C. ; Yang, Jie ; Taniguchi, Takashi ; Watanabe, Kenji ; Wang, Feng ; Wang, Xijie ; Neaton, Jeffrey B. ; Heinz, Tony F. ; Lindenberg, Aaron M. ; da Jornada, Felipe H. ; Raja, Archana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-a894b3dbb169eebf6b6e909ca22a815afb031926ed8f62bfbf9cd02a6f689e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/125</topic><topic>639/925</topic><topic>639/925/357/1018</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Electron diffraction</topic><topic>Electron states</topic><topic>Electrons</topic><topic>First principles</topic><topic>Heating</topic><topic>Heterostructures</topic><topic>Interlayers</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Nanoscience</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Phonons</topic><topic>technology</topic><topic>Time</topic><topic>two-dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sood, Aditya</creatorcontrib><creatorcontrib>Haber, Jonah B.</creatorcontrib><creatorcontrib>Carlström, Johan</creatorcontrib><creatorcontrib>Peterson, Elizabeth A.</creatorcontrib><creatorcontrib>Barre, Elyse</creatorcontrib><creatorcontrib>Georgaras, Johnathan D.</creatorcontrib><creatorcontrib>Reid, Alexander H. M.</creatorcontrib><creatorcontrib>Shen, Xiaozhe</creatorcontrib><creatorcontrib>Zajac, Marc E.</creatorcontrib><creatorcontrib>Regan, Emma C.</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Wang, Xijie</creatorcontrib><creatorcontrib>Neaton, Jeffrey B.</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>da Jornada, Felipe H.</creatorcontrib><creatorcontrib>Raja, Archana</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sood, Aditya</au><au>Haber, Jonah B.</au><au>Carlström, Johan</au><au>Peterson, Elizabeth A.</au><au>Barre, Elyse</au><au>Georgaras, Johnathan D.</au><au>Reid, Alexander H. M.</au><au>Shen, Xiaozhe</au><au>Zajac, Marc E.</au><au>Regan, Emma C.</au><au>Yang, Jie</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Wang, Feng</au><au>Wang, Xijie</au><au>Neaton, Jeffrey B.</au><au>Heinz, Tony F.</au><au>Lindenberg, Aaron M.</au><au>da Jornada, Felipe H.</au><au>Raja, Archana</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><issue>1</issue><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe
2
/WS
2
monolayers. Following the selective excitation of WSe
2
, we measure the concurrent heating of both WSe
2
and WS
2
on a picosecond timescale—an observation that is not explained by phonon transport across the interface. Using first-principles calculations, we identify a fast channel involving an electronic state hybridized across the heterostructure, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons are emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Taken together, our work indicates strong electron–phonon coupling via layer-hybridized electronic states—a novel route to control energy transport across atomic junctions.
Femtosecond electron diffraction and ab initio theory unravel ultrafast lattice dynamics in photoexcited two-dimensional heterostructures during charge transfer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36543882</pmid><doi>10.1038/s41565-022-01253-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4319-666X</orcidid><orcidid>https://orcid.org/0000-0002-6844-608X</orcidid><orcidid>https://orcid.org/0000-0001-8883-3741</orcidid><orcidid>https://orcid.org/0000-0001-8906-549X</orcidid><orcidid>https://orcid.org/0000-0003-2548-6636</orcidid><orcidid>https://orcid.org/0000-0001-6712-7151</orcidid><orcidid>https://orcid.org/0000-0001-5379-3604</orcidid><orcidid>https://orcid.org/0000-0002-9100-6031</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3324-4709</orcidid><orcidid>https://orcid.org/0000-0002-7587-295X</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-3233-7161</orcidid><orcidid>https://orcid.org/0000-0001-8369-6194</orcidid><orcidid>https://orcid.org/0000-0001-7585-6135</orcidid><orcidid>https://orcid.org/0000000175856135</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid><orcidid>https://orcid.org/0000000325486636</orcidid><orcidid>https://orcid.org/000000024319666X</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000332337161</orcidid><orcidid>https://orcid.org/0000000153793604</orcidid><orcidid>https://orcid.org/0000000188833741</orcidid><orcidid>https://orcid.org/0000000291006031</orcidid><orcidid>https://orcid.org/0000000167127151</orcidid><orcidid>https://orcid.org/0000000183696194</orcidid><orcidid>https://orcid.org/000000026844608X</orcidid><orcidid>https://orcid.org/0000000333244709</orcidid><orcidid>https://orcid.org/000000027587295X</orcidid><orcidid>https://orcid.org/000000018906549X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2023-01, Vol.18 (1), p.29-35 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_osti_scitechconnect_1972268 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 140/125 639/925 639/925/357/1018 Charge transfer Chemistry and Materials Science Coupling Electron diffraction Electron states Electrons First principles Heating Heterostructures Interlayers Letter Materials Science Nanoscience NANOSCIENCE AND NANOTECHNOLOGY Nanotechnology Nanotechnology and Microengineering Phonons technology Time two-dimensional materials |
title | Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20phonon%20emission%20in%20two-dimensional%20heterostructures%20triggered%20by%20ultrafast%20charge%20transfer&rft.jtitle=Nature%20nanotechnology&rft.au=Sood,%20Aditya&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2023-01-01&rft.volume=18&rft.issue=1&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-022-01253-7&rft_dat=%3Cproquest_osti_%3E2757160197%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769875999&rft_id=info:pmid/36543882&rfr_iscdi=true |