Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano‐ to Microscale
Many bacteria use protein‐based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, he...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-06, Vol.35 (23), p.e2212065-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2212065 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Ferlez, Bryan H. Kirst, Henning Greber, Basil J. Nogales, Eva Sutter, Markus Kerfeld, Cheryl A. |
description | Many bacteria use protein‐based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC‐H), pseudohexameric/trimeric (BMC‐T), or pentameric (BMC‐P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self‐assemble into 2D sheets, open‐ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity‐based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end‐cap structures, can be derived from a glycyl radical enzyme‐associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC‐based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC‐based structures.
Self‐assembling shell proteins derived from bacterial microcompartments are a promising new biomaterial with applications in drug delivery, metabolic engineering, cell‐free synthesis, and bioelectronics. A synthetic platform produces pleomorphic shells spanning the nano‐ to microscale that are rapidly purified. Geometric models of new morphologies suggest shared design principles with asymmetric carbon and viral protein analogs. |
doi_str_mv | 10.1002/adma.202212065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1971387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806069685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4405-34f725f704fe57a8732d75d50b1c1b5cc4e3d95eea2810e836a262b99ff554543</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi1ERacDW5bIgk03GXxN4mUol1ZqAamwthznpEmV2KmdgGbHI_CMPAkepRSJDauz-c6v_4LQc0p2lBD22jSj2THCGGUkl4_QhkpGM0GUfIw2RHGZqVyUx-gkxltCiMpJ_gQd81xxVnC2Qd_OYYbgB3_jl4irGGGshz32Lf48gB99mLre4jfGJqo3A77qbfDWj5MJ8whuxtcdDAOugu36Gey8BIj4ejLO9e4Gzx3gj8b5Xz9-4tmvz9GaAZ6io9YMEZ7d3y36-v7dl7Pz7PLTh4uz6jKzQhCZcdEWTLYFES3IwpTJclPIRpKaWlpLawXwRkkAw0pKoOS5YTmrlWpbKYUUfIterro-zr2O9uCxs965ZFVTVVCeNLfodIWm4O8WiLMe-2hTLOMgtaJZSVJtKi9lQl_9g976JbgUIVGMc1XkBUnUbqUOcWOAVk-hH03Ya0r0YTZ9mE0_zJYeXtzLLvUIzQP-Z6cEqBX43g-w_4-crt5eVX_FfwN7D6Tp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823397670</pqid></control><display><type>article</type><title>Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano‐ to Microscale</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ferlez, Bryan H. ; Kirst, Henning ; Greber, Basil J. ; Nogales, Eva ; Sutter, Markus ; Kerfeld, Cheryl A.</creator><creatorcontrib>Ferlez, Bryan H. ; Kirst, Henning ; Greber, Basil J. ; Nogales, Eva ; Sutter, Markus ; Kerfeld, Cheryl A.</creatorcontrib><description>Many bacteria use protein‐based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC‐H), pseudohexameric/trimeric (BMC‐T), or pentameric (BMC‐P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self‐assemble into 2D sheets, open‐ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity‐based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end‐cap structures, can be derived from a glycyl radical enzyme‐associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC‐based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC‐based structures.
Self‐assembling shell proteins derived from bacterial microcompartments are a promising new biomaterial with applications in drug delivery, metabolic engineering, cell‐free synthesis, and bioelectronics. A synthetic platform produces pleomorphic shells spanning the nano‐ to microscale that are rapidly purified. Geometric models of new morphologies suggest shared design principles with asymmetric carbon and viral protein analogs.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202212065</identifier><identifier>PMID: 36932732</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; Bacteria - metabolism ; bacterial microcompartments ; Bacterial Proteins - chemistry ; Biomedical materials ; Biotechnology ; fullerenes ; nanocones ; Nanotubes ; Organelles ; Organelles - metabolism ; Proteins ; self‐assembly ; synthetic biology</subject><ispartof>Advanced materials (Weinheim), 2023-06, Vol.35 (23), p.e2212065-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4405-34f725f704fe57a8732d75d50b1c1b5cc4e3d95eea2810e836a262b99ff554543</citedby><cites>FETCH-LOGICAL-c4405-34f725f704fe57a8732d75d50b1c1b5cc4e3d95eea2810e836a262b99ff554543</cites><orcidid>0000-0003-0505-2099 ; 0000-0002-9977-8482 ; 0000-0001-9816-3681 ; 0000-0002-6982-4345 ; 0000-0001-9379-7159 ; 0000-0001-6290-4820 ; 0000000198163681 ; 0000000299778482 ; 0000000305052099 ; 0000000269824345 ; 0000000193797159 ; 0000000162904820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202212065$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202212065$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36932732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1971387$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferlez, Bryan H.</creatorcontrib><creatorcontrib>Kirst, Henning</creatorcontrib><creatorcontrib>Greber, Basil J.</creatorcontrib><creatorcontrib>Nogales, Eva</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A.</creatorcontrib><title>Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano‐ to Microscale</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Many bacteria use protein‐based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC‐H), pseudohexameric/trimeric (BMC‐T), or pentameric (BMC‐P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self‐assemble into 2D sheets, open‐ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity‐based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end‐cap structures, can be derived from a glycyl radical enzyme‐associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC‐based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC‐based structures.
Self‐assembling shell proteins derived from bacterial microcompartments are a promising new biomaterial with applications in drug delivery, metabolic engineering, cell‐free synthesis, and bioelectronics. A synthetic platform produces pleomorphic shells spanning the nano‐ to microscale that are rapidly purified. Geometric models of new morphologies suggest shared design principles with asymmetric carbon and viral protein analogs.</description><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>bacterial microcompartments</subject><subject>Bacterial Proteins - chemistry</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>fullerenes</subject><subject>nanocones</subject><subject>Nanotubes</subject><subject>Organelles</subject><subject>Organelles - metabolism</subject><subject>Proteins</subject><subject>self‐assembly</subject><subject>synthetic biology</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi1ERacDW5bIgk03GXxN4mUol1ZqAamwthznpEmV2KmdgGbHI_CMPAkepRSJDauz-c6v_4LQc0p2lBD22jSj2THCGGUkl4_QhkpGM0GUfIw2RHGZqVyUx-gkxltCiMpJ_gQd81xxVnC2Qd_OYYbgB3_jl4irGGGshz32Lf48gB99mLre4jfGJqo3A77qbfDWj5MJ8whuxtcdDAOugu36Gey8BIj4ejLO9e4Gzx3gj8b5Xz9-4tmvz9GaAZ6io9YMEZ7d3y36-v7dl7Pz7PLTh4uz6jKzQhCZcdEWTLYFES3IwpTJclPIRpKaWlpLawXwRkkAw0pKoOS5YTmrlWpbKYUUfIterro-zr2O9uCxs965ZFVTVVCeNLfodIWm4O8WiLMe-2hTLOMgtaJZSVJtKi9lQl_9g976JbgUIVGMc1XkBUnUbqUOcWOAVk-hH03Ya0r0YTZ9mE0_zJYeXtzLLvUIzQP-Z6cEqBX43g-w_4-crt5eVX_FfwN7D6Tp</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ferlez, Bryan H.</creator><creator>Kirst, Henning</creator><creator>Greber, Basil J.</creator><creator>Nogales, Eva</creator><creator>Sutter, Markus</creator><creator>Kerfeld, Cheryl A.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0505-2099</orcidid><orcidid>https://orcid.org/0000-0002-9977-8482</orcidid><orcidid>https://orcid.org/0000-0001-9816-3681</orcidid><orcidid>https://orcid.org/0000-0002-6982-4345</orcidid><orcidid>https://orcid.org/0000-0001-9379-7159</orcidid><orcidid>https://orcid.org/0000-0001-6290-4820</orcidid><orcidid>https://orcid.org/0000000198163681</orcidid><orcidid>https://orcid.org/0000000299778482</orcidid><orcidid>https://orcid.org/0000000305052099</orcidid><orcidid>https://orcid.org/0000000269824345</orcidid><orcidid>https://orcid.org/0000000193797159</orcidid><orcidid>https://orcid.org/0000000162904820</orcidid></search><sort><creationdate>20230601</creationdate><title>Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano‐ to Microscale</title><author>Ferlez, Bryan H. ; Kirst, Henning ; Greber, Basil J. ; Nogales, Eva ; Sutter, Markus ; Kerfeld, Cheryl A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4405-34f725f704fe57a8732d75d50b1c1b5cc4e3d95eea2810e836a262b99ff554543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>bacterial microcompartments</topic><topic>Bacterial Proteins - chemistry</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>fullerenes</topic><topic>nanocones</topic><topic>Nanotubes</topic><topic>Organelles</topic><topic>Organelles - metabolism</topic><topic>Proteins</topic><topic>self‐assembly</topic><topic>synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferlez, Bryan H.</creatorcontrib><creatorcontrib>Kirst, Henning</creatorcontrib><creatorcontrib>Greber, Basil J.</creatorcontrib><creatorcontrib>Nogales, Eva</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferlez, Bryan H.</au><au>Kirst, Henning</au><au>Greber, Basil J.</au><au>Nogales, Eva</au><au>Sutter, Markus</au><au>Kerfeld, Cheryl A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano‐ to Microscale</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>23</issue><spage>e2212065</spage><epage>n/a</epage><pages>e2212065-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Many bacteria use protein‐based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC‐H), pseudohexameric/trimeric (BMC‐T), or pentameric (BMC‐P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self‐assemble into 2D sheets, open‐ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity‐based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end‐cap structures, can be derived from a glycyl radical enzyme‐associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC‐based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC‐based structures.
Self‐assembling shell proteins derived from bacterial microcompartments are a promising new biomaterial with applications in drug delivery, metabolic engineering, cell‐free synthesis, and bioelectronics. A synthetic platform produces pleomorphic shells spanning the nano‐ to microscale that are rapidly purified. Geometric models of new morphologies suggest shared design principles with asymmetric carbon and viral protein analogs.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36932732</pmid><doi>10.1002/adma.202212065</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0505-2099</orcidid><orcidid>https://orcid.org/0000-0002-9977-8482</orcidid><orcidid>https://orcid.org/0000-0001-9816-3681</orcidid><orcidid>https://orcid.org/0000-0002-6982-4345</orcidid><orcidid>https://orcid.org/0000-0001-9379-7159</orcidid><orcidid>https://orcid.org/0000-0001-6290-4820</orcidid><orcidid>https://orcid.org/0000000198163681</orcidid><orcidid>https://orcid.org/0000000299778482</orcidid><orcidid>https://orcid.org/0000000305052099</orcidid><orcidid>https://orcid.org/0000000269824345</orcidid><orcidid>https://orcid.org/0000000193797159</orcidid><orcidid>https://orcid.org/0000000162904820</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-06, Vol.35 (23), p.e2212065-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1971387 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Bacteria Bacteria - metabolism bacterial microcompartments Bacterial Proteins - chemistry Biomedical materials Biotechnology fullerenes nanocones Nanotubes Organelles Organelles - metabolism Proteins self‐assembly synthetic biology |
title | Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano‐ to Microscale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterologous%20Assembly%20of%20Pleomorphic%20Bacterial%20Microcompartment%20Shell%20Architectures%20Spanning%20the%20Nano%E2%80%90%20to%20Microscale&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ferlez,%20Bryan%20H.&rft.date=2023-06-01&rft.volume=35&rft.issue=23&rft.spage=e2212065&rft.epage=n/a&rft.pages=e2212065-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202212065&rft_dat=%3Cproquest_osti_%3E2806069685%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823397670&rft_id=info:pmid/36932732&rfr_iscdi=true |