Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media
The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers us...
Gespeichert in:
Veröffentlicht in: | Physical review. A 2023-04, Vol.107 (4), Article 042215 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physical review. A |
container_volume | 107 |
creator | Koukoutsis, Efstratios Hizanidis, Kyriakos Ram, Abhay K. Vahala, George |
description | The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical algorithms. In recent years, advances in quantum information science and in the development of quantum computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper, a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous, passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equation into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which maps the weighted-physical-Hilbert space to the original Hilbert space. Furthermore, the resulting evolution equation for the electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is suitable for quantum computing. |
doi_str_mv | 10.1103/PhysRevA.107.042215 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1970472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_107_042215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-29c494c612447f41901fcf1e48f7269d46bddb8f0a4e77526ba4903970ec5b6d3</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWGqfwE1wPzV_kzTLUn8qVJSi65DJD41MM3WSVvs2PotPZkrV1b2c83G55wBwidEYY0Svn1f7tHS76RgjMUaMEFyfgAFhXFZSUnb6vxN-DkYpvSGEcC0lp3wAljf71EW41psEdbRwG0PW_R66XdducyiW73r4qD8_XNtC977VBzF9f4UIs4upmDa41pncBwPXzgZ9Ac68bpMb_c4heL27fZnNq8XT_cNsuqgMETxXRBommeGYMCY8wxJhbzx2bOIF4dIy3ljbTDzSzAlRE95oJhGVAjlTN9zSIbg63u1SDiqZkJ1ZmS7G8ozChWOCFIgeIdN3KfXOq00f1iWhwkgd6lN_9RVBqGN99AemIWYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media</title><source>American Physical Society Journals</source><creator>Koukoutsis, Efstratios ; Hizanidis, Kyriakos ; Ram, Abhay K. ; Vahala, George</creator><creatorcontrib>Koukoutsis, Efstratios ; Hizanidis, Kyriakos ; Ram, Abhay K. ; Vahala, George ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><description>The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical algorithms. In recent years, advances in quantum information science and in the development of quantum computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper, a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous, passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equation into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which maps the weighted-physical-Hilbert space to the original Hilbert space. Furthermore, the resulting evolution equation for the electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is suitable for quantum computing.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.107.042215</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Classical electromagnetism ; Dirac equation ; Electromagnetic wave theory ; Light propagation, transmission & absorption ; Maxwell equations ; Non-Hermitean systems ; Quantum computing ; Quantum formalism ; Quantum information Science ; Quantum simulation</subject><ispartof>Physical review. A, 2023-04, Vol.107 (4), Article 042215</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-29c494c612447f41901fcf1e48f7269d46bddb8f0a4e77526ba4903970ec5b6d3</citedby><cites>FETCH-LOGICAL-c276t-29c494c612447f41901fcf1e48f7269d46bddb8f0a4e77526ba4903970ec5b6d3</cites><orcidid>0000-0002-9143-2743 ; 0000000291432743 ; 0000000196930111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1970472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Koukoutsis, Efstratios</creatorcontrib><creatorcontrib>Hizanidis, Kyriakos</creatorcontrib><creatorcontrib>Ram, Abhay K.</creatorcontrib><creatorcontrib>Vahala, George</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><title>Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media</title><title>Physical review. A</title><description>The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical algorithms. In recent years, advances in quantum information science and in the development of quantum computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper, a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous, passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equation into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which maps the weighted-physical-Hilbert space to the original Hilbert space. Furthermore, the resulting evolution equation for the electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is suitable for quantum computing.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Classical electromagnetism</subject><subject>Dirac equation</subject><subject>Electromagnetic wave theory</subject><subject>Light propagation, transmission & absorption</subject><subject>Maxwell equations</subject><subject>Non-Hermitean systems</subject><subject>Quantum computing</subject><subject>Quantum formalism</subject><subject>Quantum information Science</subject><subject>Quantum simulation</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWGqfwE1wPzV_kzTLUn8qVJSi65DJD41MM3WSVvs2PotPZkrV1b2c83G55wBwidEYY0Svn1f7tHS76RgjMUaMEFyfgAFhXFZSUnb6vxN-DkYpvSGEcC0lp3wAljf71EW41psEdbRwG0PW_R66XdducyiW73r4qD8_XNtC977VBzF9f4UIs4upmDa41pncBwPXzgZ9Ac68bpMb_c4heL27fZnNq8XT_cNsuqgMETxXRBommeGYMCY8wxJhbzx2bOIF4dIy3ljbTDzSzAlRE95oJhGVAjlTN9zSIbg63u1SDiqZkJ1ZmS7G8ozChWOCFIgeIdN3KfXOq00f1iWhwkgd6lN_9RVBqGN99AemIWYw</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Koukoutsis, Efstratios</creator><creator>Hizanidis, Kyriakos</creator><creator>Ram, Abhay K.</creator><creator>Vahala, George</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9143-2743</orcidid><orcidid>https://orcid.org/0000000291432743</orcidid><orcidid>https://orcid.org/0000000196930111</orcidid></search><sort><creationdate>20230420</creationdate><title>Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media</title><author>Koukoutsis, Efstratios ; Hizanidis, Kyriakos ; Ram, Abhay K. ; Vahala, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-29c494c612447f41901fcf1e48f7269d46bddb8f0a4e77526ba4903970ec5b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Classical electromagnetism</topic><topic>Dirac equation</topic><topic>Electromagnetic wave theory</topic><topic>Light propagation, transmission & absorption</topic><topic>Maxwell equations</topic><topic>Non-Hermitean systems</topic><topic>Quantum computing</topic><topic>Quantum formalism</topic><topic>Quantum information Science</topic><topic>Quantum simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koukoutsis, Efstratios</creatorcontrib><creatorcontrib>Hizanidis, Kyriakos</creatorcontrib><creatorcontrib>Ram, Abhay K.</creatorcontrib><creatorcontrib>Vahala, George</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koukoutsis, Efstratios</au><au>Hizanidis, Kyriakos</au><au>Ram, Abhay K.</au><au>Vahala, George</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>College of William and Mary, Williamsburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media</atitle><jtitle>Physical review. A</jtitle><date>2023-04-20</date><risdate>2023</risdate><volume>107</volume><issue>4</issue><artnum>042215</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical algorithms. In recent years, advances in quantum information science and in the development of quantum computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper, a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous, passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equation into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which maps the weighted-physical-Hilbert space to the original Hilbert space. Furthermore, the resulting evolution equation for the electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is suitable for quantum computing.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevA.107.042215</doi><orcidid>https://orcid.org/0000-0002-9143-2743</orcidid><orcidid>https://orcid.org/0000000291432743</orcidid><orcidid>https://orcid.org/0000000196930111</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2023-04, Vol.107 (4), Article 042215 |
issn | 2469-9926 2469-9934 |
language | eng |
recordid | cdi_osti_scitechconnect_1970472 |
source | American Physical Society Journals |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Classical electromagnetism Dirac equation Electromagnetic wave theory Light propagation, transmission & absorption Maxwell equations Non-Hermitean systems Quantum computing Quantum formalism Quantum information Science Quantum simulation |
title | Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dyson%20maps%20and%20unitary%20evolution%20for%20Maxwell%20equations%C2%A0in%20tensor%20dielectric%20media&rft.jtitle=Physical%20review.%20A&rft.au=Koukoutsis,%20Efstratios&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2023-04-20&rft.volume=107&rft.issue=4&rft.artnum=042215&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.107.042215&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_107_042215%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |