Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media

The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2023-04, Vol.107 (4), Article 042215
Hauptverfasser: Koukoutsis, Efstratios, Hizanidis, Kyriakos, Ram, Abhay K., Vahala, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. A
container_volume 107
creator Koukoutsis, Efstratios
Hizanidis, Kyriakos
Ram, Abhay K.
Vahala, George
description The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical algorithms. In recent years, advances in quantum information science and in the development of quantum computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper, a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous, passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equation into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which maps the weighted-physical-Hilbert space to the original Hilbert space. Furthermore, the resulting evolution equation for the electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is suitable for quantum computing.
doi_str_mv 10.1103/PhysRevA.107.042215
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1970472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_107_042215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-29c494c612447f41901fcf1e48f7269d46bddb8f0a4e77526ba4903970ec5b6d3</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWGqfwE1wPzV_kzTLUn8qVJSi65DJD41MM3WSVvs2PotPZkrV1b2c83G55wBwidEYY0Svn1f7tHS76RgjMUaMEFyfgAFhXFZSUnb6vxN-DkYpvSGEcC0lp3wAljf71EW41psEdbRwG0PW_R66XdducyiW73r4qD8_XNtC977VBzF9f4UIs4upmDa41pncBwPXzgZ9Ac68bpMb_c4heL27fZnNq8XT_cNsuqgMETxXRBommeGYMCY8wxJhbzx2bOIF4dIy3ljbTDzSzAlRE95oJhGVAjlTN9zSIbg63u1SDiqZkJ1ZmS7G8ozChWOCFIgeIdN3KfXOq00f1iWhwkgd6lN_9RVBqGN99AemIWYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media</title><source>American Physical Society Journals</source><creator>Koukoutsis, Efstratios ; Hizanidis, Kyriakos ; Ram, Abhay K. ; Vahala, George</creator><creatorcontrib>Koukoutsis, Efstratios ; Hizanidis, Kyriakos ; Ram, Abhay K. ; Vahala, George ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><description>The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical algorithms. In recent years, advances in quantum information science and in the development of quantum computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper, a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous, passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equation into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which maps the weighted-physical-Hilbert space to the original Hilbert space. Furthermore, the resulting evolution equation for the electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is suitable for quantum computing.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.107.042215</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Classical electromagnetism ; Dirac equation ; Electromagnetic wave theory ; Light propagation, transmission &amp; absorption ; Maxwell equations ; Non-Hermitean systems ; Quantum computing ; Quantum formalism ; Quantum information Science ; Quantum simulation</subject><ispartof>Physical review. A, 2023-04, Vol.107 (4), Article 042215</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-29c494c612447f41901fcf1e48f7269d46bddb8f0a4e77526ba4903970ec5b6d3</citedby><cites>FETCH-LOGICAL-c276t-29c494c612447f41901fcf1e48f7269d46bddb8f0a4e77526ba4903970ec5b6d3</cites><orcidid>0000-0002-9143-2743 ; 0000000291432743 ; 0000000196930111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1970472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Koukoutsis, Efstratios</creatorcontrib><creatorcontrib>Hizanidis, Kyriakos</creatorcontrib><creatorcontrib>Ram, Abhay K.</creatorcontrib><creatorcontrib>Vahala, George</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><title>Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media</title><title>Physical review. A</title><description>The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical algorithms. In recent years, advances in quantum information science and in the development of quantum computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper, a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous, passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equation into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which maps the weighted-physical-Hilbert space to the original Hilbert space. Furthermore, the resulting evolution equation for the electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is suitable for quantum computing.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Classical electromagnetism</subject><subject>Dirac equation</subject><subject>Electromagnetic wave theory</subject><subject>Light propagation, transmission &amp; absorption</subject><subject>Maxwell equations</subject><subject>Non-Hermitean systems</subject><subject>Quantum computing</subject><subject>Quantum formalism</subject><subject>Quantum information Science</subject><subject>Quantum simulation</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWGqfwE1wPzV_kzTLUn8qVJSi65DJD41MM3WSVvs2PotPZkrV1b2c83G55wBwidEYY0Svn1f7tHS76RgjMUaMEFyfgAFhXFZSUnb6vxN-DkYpvSGEcC0lp3wAljf71EW41psEdbRwG0PW_R66XdducyiW73r4qD8_XNtC977VBzF9f4UIs4upmDa41pncBwPXzgZ9Ac68bpMb_c4heL27fZnNq8XT_cNsuqgMETxXRBommeGYMCY8wxJhbzx2bOIF4dIy3ljbTDzSzAlRE95oJhGVAjlTN9zSIbg63u1SDiqZkJ1ZmS7G8ozChWOCFIgeIdN3KfXOq00f1iWhwkgd6lN_9RVBqGN99AemIWYw</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Koukoutsis, Efstratios</creator><creator>Hizanidis, Kyriakos</creator><creator>Ram, Abhay K.</creator><creator>Vahala, George</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9143-2743</orcidid><orcidid>https://orcid.org/0000000291432743</orcidid><orcidid>https://orcid.org/0000000196930111</orcidid></search><sort><creationdate>20230420</creationdate><title>Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media</title><author>Koukoutsis, Efstratios ; Hizanidis, Kyriakos ; Ram, Abhay K. ; Vahala, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-29c494c612447f41901fcf1e48f7269d46bddb8f0a4e77526ba4903970ec5b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Classical electromagnetism</topic><topic>Dirac equation</topic><topic>Electromagnetic wave theory</topic><topic>Light propagation, transmission &amp; absorption</topic><topic>Maxwell equations</topic><topic>Non-Hermitean systems</topic><topic>Quantum computing</topic><topic>Quantum formalism</topic><topic>Quantum information Science</topic><topic>Quantum simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koukoutsis, Efstratios</creatorcontrib><creatorcontrib>Hizanidis, Kyriakos</creatorcontrib><creatorcontrib>Ram, Abhay K.</creatorcontrib><creatorcontrib>Vahala, George</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koukoutsis, Efstratios</au><au>Hizanidis, Kyriakos</au><au>Ram, Abhay K.</au><au>Vahala, George</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>College of William and Mary, Williamsburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media</atitle><jtitle>Physical review. A</jtitle><date>2023-04-20</date><risdate>2023</risdate><volume>107</volume><issue>4</issue><artnum>042215</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental interest in a wide variety of fields. An understanding of observational results generally requires a numerical solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical algorithms. In recent years, advances in quantum information science and in the development of quantum computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper, a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous, passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equation into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which maps the weighted-physical-Hilbert space to the original Hilbert space. Furthermore, the resulting evolution equation for the electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is suitable for quantum computing.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevA.107.042215</doi><orcidid>https://orcid.org/0000-0002-9143-2743</orcidid><orcidid>https://orcid.org/0000000291432743</orcidid><orcidid>https://orcid.org/0000000196930111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2023-04, Vol.107 (4), Article 042215
issn 2469-9926
2469-9934
language eng
recordid cdi_osti_scitechconnect_1970472
source American Physical Society Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Classical electromagnetism
Dirac equation
Electromagnetic wave theory
Light propagation, transmission & absorption
Maxwell equations
Non-Hermitean systems
Quantum computing
Quantum formalism
Quantum information Science
Quantum simulation
title Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dyson%20maps%20and%20unitary%20evolution%20for%20Maxwell%20equations%C2%A0in%20tensor%20dielectric%20media&rft.jtitle=Physical%20review.%20A&rft.au=Koukoutsis,%20Efstratios&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2023-04-20&rft.volume=107&rft.issue=4&rft.artnum=042215&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.107.042215&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_107_042215%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true