Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries
Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)sodiation processes. Herein, we report a P2-layered lithium dual-s...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-05, Vol.145 (17), p.9596-9606 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9606 |
---|---|
container_issue | 17 |
container_start_page | 9596 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Wu, Zhonghan Ni, Youxuan Tan, Sha Hu, Enyuan He, Lunhua Liu, Jiuding Hou, Machuan Jiao, Peixin Zhang, Kai Cheng, Fangyi Chen, Jun |
description | Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries. |
doi_str_mv | 10.1021/jacs.3c00117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1969926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801979259</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-894178b8472aa94938782c2ab53d26669d673f21190a10cbd4bd3b6ec9144d853</originalsourceid><addsrcrecordid>eNptkctvEzEQxi1ERUPhxhlZnDiwxY9dP440PFopUiUCFy7WrO00jjbrYHsRQeJ_r6OEcqk00mik33zz-BB6RcklJYy-34DNl9wSQql8gma0Y6TpKBNP0YwQwhqpBD9Hz3Pe1LJlij5D51ySTjEmZ-jvVw9D-BPGO3wd7tZ4DjuwoewxjA7_8CniZUkQRlxjAXufvMO3v4PzlSzr6HzGvwLgRSjrMG3xxwmGZhmKx8upzyWUqYQ44lVMeBldJZqbWl5BKT4Fn1-gsxUM2b885Qv0_fOnb_PrZnH75Wb-YdEAV7o0SrdUql61kgHoVnMlFbMM-o47JoTQTki-YpRqApTY3rW9473wVtO2darjF-jNUTfWnUyuB3q7tnEcvS2GaqE1ExV6e4R2Kf6cfC5mG7L1wwCjj1M2TBGqpWadrui7I2pTzDn5ldmlsIW0N5SYgyvm4Io5uVLx1yflqd969wD_s-H_6EPXJk5prN94XOseqvWUrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801979259</pqid></control><display><type>article</type><title>Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries</title><source>ACS Publications</source><creator>Wu, Zhonghan ; Ni, Youxuan ; Tan, Sha ; Hu, Enyuan ; He, Lunhua ; Liu, Jiuding ; Hou, Machuan ; Jiao, Peixin ; Zhang, Kai ; Cheng, Fangyi ; Chen, Jun</creator><creatorcontrib>Wu, Zhonghan ; Ni, Youxuan ; Tan, Sha ; Hu, Enyuan ; He, Lunhua ; Liu, Jiuding ; Hou, Machuan ; Jiao, Peixin ; Zhang, Kai ; Cheng, Fangyi ; Chen, Jun ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c00117</identifier><identifier>PMID: 37058227</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anion redox ; dual-site substitution ; ENERGY STORAGE ; ions ; lattices ; oxygen ; redox reactions ; sodium ion batteries ; transition metals</subject><ispartof>Journal of the American Chemical Society, 2023-05, Vol.145 (17), p.9596-9606</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-894178b8472aa94938782c2ab53d26669d673f21190a10cbd4bd3b6ec9144d853</citedby><cites>FETCH-LOGICAL-a389t-894178b8472aa94938782c2ab53d26669d673f21190a10cbd4bd3b6ec9144d853</cites><orcidid>0000-0001-8277-893X ; 0000-0002-9400-1500 ; 0000-0002-1881-4534 ; 0000-0001-8604-9689 ; 0000-0001-8038-745X ; 000000018277893X ; 0000000294001500 ; 0000000218814534 ; 000000018038745X ; 0000000186049689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c00117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c00117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37058227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1969926$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhonghan</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Tan, Sha</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>He, Lunhua</creatorcontrib><creatorcontrib>Liu, Jiuding</creatorcontrib><creatorcontrib>Hou, Machuan</creatorcontrib><creatorcontrib>Jiao, Peixin</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries.</description><subject>anion redox</subject><subject>dual-site substitution</subject><subject>ENERGY STORAGE</subject><subject>ions</subject><subject>lattices</subject><subject>oxygen</subject><subject>redox reactions</subject><subject>sodium ion batteries</subject><subject>transition metals</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkctvEzEQxi1ERUPhxhlZnDiwxY9dP440PFopUiUCFy7WrO00jjbrYHsRQeJ_r6OEcqk00mik33zz-BB6RcklJYy-34DNl9wSQql8gma0Y6TpKBNP0YwQwhqpBD9Hz3Pe1LJlij5D51ySTjEmZ-jvVw9D-BPGO3wd7tZ4DjuwoewxjA7_8CniZUkQRlxjAXufvMO3v4PzlSzr6HzGvwLgRSjrMG3xxwmGZhmKx8upzyWUqYQ44lVMeBldJZqbWl5BKT4Fn1-gsxUM2b885Qv0_fOnb_PrZnH75Wb-YdEAV7o0SrdUql61kgHoVnMlFbMM-o47JoTQTki-YpRqApTY3rW9473wVtO2darjF-jNUTfWnUyuB3q7tnEcvS2GaqE1ExV6e4R2Kf6cfC5mG7L1wwCjj1M2TBGqpWadrui7I2pTzDn5ldmlsIW0N5SYgyvm4Io5uVLx1yflqd969wD_s-H_6EPXJk5prN94XOseqvWUrQ</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Wu, Zhonghan</creator><creator>Ni, Youxuan</creator><creator>Tan, Sha</creator><creator>Hu, Enyuan</creator><creator>He, Lunhua</creator><creator>Liu, Jiuding</creator><creator>Hou, Machuan</creator><creator>Jiao, Peixin</creator><creator>Zhang, Kai</creator><creator>Cheng, Fangyi</creator><creator>Chen, Jun</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8277-893X</orcidid><orcidid>https://orcid.org/0000-0002-9400-1500</orcidid><orcidid>https://orcid.org/0000-0002-1881-4534</orcidid><orcidid>https://orcid.org/0000-0001-8604-9689</orcidid><orcidid>https://orcid.org/0000-0001-8038-745X</orcidid><orcidid>https://orcid.org/000000018277893X</orcidid><orcidid>https://orcid.org/0000000294001500</orcidid><orcidid>https://orcid.org/0000000218814534</orcidid><orcidid>https://orcid.org/000000018038745X</orcidid><orcidid>https://orcid.org/0000000186049689</orcidid></search><sort><creationdate>20230503</creationdate><title>Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries</title><author>Wu, Zhonghan ; Ni, Youxuan ; Tan, Sha ; Hu, Enyuan ; He, Lunhua ; Liu, Jiuding ; Hou, Machuan ; Jiao, Peixin ; Zhang, Kai ; Cheng, Fangyi ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-894178b8472aa94938782c2ab53d26669d673f21190a10cbd4bd3b6ec9144d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anion redox</topic><topic>dual-site substitution</topic><topic>ENERGY STORAGE</topic><topic>ions</topic><topic>lattices</topic><topic>oxygen</topic><topic>redox reactions</topic><topic>sodium ion batteries</topic><topic>transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhonghan</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Tan, Sha</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>He, Lunhua</creatorcontrib><creatorcontrib>Liu, Jiuding</creatorcontrib><creatorcontrib>Hou, Machuan</creatorcontrib><creatorcontrib>Jiao, Peixin</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhonghan</au><au>Ni, Youxuan</au><au>Tan, Sha</au><au>Hu, Enyuan</au><au>He, Lunhua</au><au>Liu, Jiuding</au><au>Hou, Machuan</au><au>Jiao, Peixin</au><au>Zhang, Kai</au><au>Cheng, Fangyi</au><au>Chen, Jun</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-05-03</date><risdate>2023</risdate><volume>145</volume><issue>17</issue><spage>9596</spage><epage>9606</epage><pages>9596-9606</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37058227</pmid><doi>10.1021/jacs.3c00117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8277-893X</orcidid><orcidid>https://orcid.org/0000-0002-9400-1500</orcidid><orcidid>https://orcid.org/0000-0002-1881-4534</orcidid><orcidid>https://orcid.org/0000-0001-8604-9689</orcidid><orcidid>https://orcid.org/0000-0001-8038-745X</orcidid><orcidid>https://orcid.org/000000018277893X</orcidid><orcidid>https://orcid.org/0000000294001500</orcidid><orcidid>https://orcid.org/0000000218814534</orcidid><orcidid>https://orcid.org/000000018038745X</orcidid><orcidid>https://orcid.org/0000000186049689</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-05, Vol.145 (17), p.9596-9606 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1969926 |
source | ACS Publications |
subjects | anion redox dual-site substitution ENERGY STORAGE ions lattices oxygen redox reactions sodium ion batteries transition metals |
title | Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20High%20Capacity%20and%20Zero%20Strain%20in%20Layered%20Oxide%20Cathodes%20via%20Lithium%20Dual-Site%20Substitution%20for%20Sodium-Ion%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wu,%20Zhonghan&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2023-05-03&rft.volume=145&rft.issue=17&rft.spage=9596&rft.epage=9606&rft.pages=9596-9606&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c00117&rft_dat=%3Cproquest_osti_%3E2801979259%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801979259&rft_id=info:pmid/37058227&rfr_iscdi=true |