Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries

Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)­sodiation processes. Herein, we report a P2-layered lithium dual-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-05, Vol.145 (17), p.9596-9606
Hauptverfasser: Wu, Zhonghan, Ni, Youxuan, Tan, Sha, Hu, Enyuan, He, Lunhua, Liu, Jiuding, Hou, Machuan, Jiao, Peixin, Zhang, Kai, Cheng, Fangyi, Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9606
container_issue 17
container_start_page 9596
container_title Journal of the American Chemical Society
container_volume 145
creator Wu, Zhonghan
Ni, Youxuan
Tan, Sha
Hu, Enyuan
He, Lunhua
Liu, Jiuding
Hou, Machuan
Jiao, Peixin
Zhang, Kai
Cheng, Fangyi
Chen, Jun
description Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)­sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]­O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries.
doi_str_mv 10.1021/jacs.3c00117
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1969926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801979259</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-894178b8472aa94938782c2ab53d26669d673f21190a10cbd4bd3b6ec9144d853</originalsourceid><addsrcrecordid>eNptkctvEzEQxi1ERUPhxhlZnDiwxY9dP440PFopUiUCFy7WrO00jjbrYHsRQeJ_r6OEcqk00mik33zz-BB6RcklJYy-34DNl9wSQql8gma0Y6TpKBNP0YwQwhqpBD9Hz3Pe1LJlij5D51ySTjEmZ-jvVw9D-BPGO3wd7tZ4DjuwoewxjA7_8CniZUkQRlxjAXufvMO3v4PzlSzr6HzGvwLgRSjrMG3xxwmGZhmKx8upzyWUqYQ44lVMeBldJZqbWl5BKT4Fn1-gsxUM2b885Qv0_fOnb_PrZnH75Wb-YdEAV7o0SrdUql61kgHoVnMlFbMM-o47JoTQTki-YpRqApTY3rW9473wVtO2darjF-jNUTfWnUyuB3q7tnEcvS2GaqE1ExV6e4R2Kf6cfC5mG7L1wwCjj1M2TBGqpWadrui7I2pTzDn5ldmlsIW0N5SYgyvm4Io5uVLx1yflqd969wD_s-H_6EPXJk5prN94XOseqvWUrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801979259</pqid></control><display><type>article</type><title>Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries</title><source>ACS Publications</source><creator>Wu, Zhonghan ; Ni, Youxuan ; Tan, Sha ; Hu, Enyuan ; He, Lunhua ; Liu, Jiuding ; Hou, Machuan ; Jiao, Peixin ; Zhang, Kai ; Cheng, Fangyi ; Chen, Jun</creator><creatorcontrib>Wu, Zhonghan ; Ni, Youxuan ; Tan, Sha ; Hu, Enyuan ; He, Lunhua ; Liu, Jiuding ; Hou, Machuan ; Jiao, Peixin ; Zhang, Kai ; Cheng, Fangyi ; Chen, Jun ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)­sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]­O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c00117</identifier><identifier>PMID: 37058227</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anion redox ; dual-site substitution ; ENERGY STORAGE ; ions ; lattices ; oxygen ; redox reactions ; sodium ion batteries ; transition metals</subject><ispartof>Journal of the American Chemical Society, 2023-05, Vol.145 (17), p.9596-9606</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-894178b8472aa94938782c2ab53d26669d673f21190a10cbd4bd3b6ec9144d853</citedby><cites>FETCH-LOGICAL-a389t-894178b8472aa94938782c2ab53d26669d673f21190a10cbd4bd3b6ec9144d853</cites><orcidid>0000-0001-8277-893X ; 0000-0002-9400-1500 ; 0000-0002-1881-4534 ; 0000-0001-8604-9689 ; 0000-0001-8038-745X ; 000000018277893X ; 0000000294001500 ; 0000000218814534 ; 000000018038745X ; 0000000186049689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c00117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c00117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37058227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1969926$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhonghan</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Tan, Sha</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>He, Lunhua</creatorcontrib><creatorcontrib>Liu, Jiuding</creatorcontrib><creatorcontrib>Hou, Machuan</creatorcontrib><creatorcontrib>Jiao, Peixin</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)­sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]­O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries.</description><subject>anion redox</subject><subject>dual-site substitution</subject><subject>ENERGY STORAGE</subject><subject>ions</subject><subject>lattices</subject><subject>oxygen</subject><subject>redox reactions</subject><subject>sodium ion batteries</subject><subject>transition metals</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkctvEzEQxi1ERUPhxhlZnDiwxY9dP440PFopUiUCFy7WrO00jjbrYHsRQeJ_r6OEcqk00mik33zz-BB6RcklJYy-34DNl9wSQql8gma0Y6TpKBNP0YwQwhqpBD9Hz3Pe1LJlij5D51ySTjEmZ-jvVw9D-BPGO3wd7tZ4DjuwoewxjA7_8CniZUkQRlxjAXufvMO3v4PzlSzr6HzGvwLgRSjrMG3xxwmGZhmKx8upzyWUqYQ44lVMeBldJZqbWl5BKT4Fn1-gsxUM2b885Qv0_fOnb_PrZnH75Wb-YdEAV7o0SrdUql61kgHoVnMlFbMM-o47JoTQTki-YpRqApTY3rW9473wVtO2darjF-jNUTfWnUyuB3q7tnEcvS2GaqE1ExV6e4R2Kf6cfC5mG7L1wwCjj1M2TBGqpWadrui7I2pTzDn5ldmlsIW0N5SYgyvm4Io5uVLx1yflqd969wD_s-H_6EPXJk5prN94XOseqvWUrQ</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Wu, Zhonghan</creator><creator>Ni, Youxuan</creator><creator>Tan, Sha</creator><creator>Hu, Enyuan</creator><creator>He, Lunhua</creator><creator>Liu, Jiuding</creator><creator>Hou, Machuan</creator><creator>Jiao, Peixin</creator><creator>Zhang, Kai</creator><creator>Cheng, Fangyi</creator><creator>Chen, Jun</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8277-893X</orcidid><orcidid>https://orcid.org/0000-0002-9400-1500</orcidid><orcidid>https://orcid.org/0000-0002-1881-4534</orcidid><orcidid>https://orcid.org/0000-0001-8604-9689</orcidid><orcidid>https://orcid.org/0000-0001-8038-745X</orcidid><orcidid>https://orcid.org/000000018277893X</orcidid><orcidid>https://orcid.org/0000000294001500</orcidid><orcidid>https://orcid.org/0000000218814534</orcidid><orcidid>https://orcid.org/000000018038745X</orcidid><orcidid>https://orcid.org/0000000186049689</orcidid></search><sort><creationdate>20230503</creationdate><title>Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries</title><author>Wu, Zhonghan ; Ni, Youxuan ; Tan, Sha ; Hu, Enyuan ; He, Lunhua ; Liu, Jiuding ; Hou, Machuan ; Jiao, Peixin ; Zhang, Kai ; Cheng, Fangyi ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-894178b8472aa94938782c2ab53d26669d673f21190a10cbd4bd3b6ec9144d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anion redox</topic><topic>dual-site substitution</topic><topic>ENERGY STORAGE</topic><topic>ions</topic><topic>lattices</topic><topic>oxygen</topic><topic>redox reactions</topic><topic>sodium ion batteries</topic><topic>transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhonghan</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Tan, Sha</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>He, Lunhua</creatorcontrib><creatorcontrib>Liu, Jiuding</creatorcontrib><creatorcontrib>Hou, Machuan</creatorcontrib><creatorcontrib>Jiao, Peixin</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhonghan</au><au>Ni, Youxuan</au><au>Tan, Sha</au><au>Hu, Enyuan</au><au>He, Lunhua</au><au>Liu, Jiuding</au><au>Hou, Machuan</au><au>Jiao, Peixin</au><au>Zhang, Kai</au><au>Cheng, Fangyi</au><au>Chen, Jun</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-05-03</date><risdate>2023</risdate><volume>145</volume><issue>17</issue><spage>9596</spage><epage>9606</epage><pages>9596-9606</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)­sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]­O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37058227</pmid><doi>10.1021/jacs.3c00117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8277-893X</orcidid><orcidid>https://orcid.org/0000-0002-9400-1500</orcidid><orcidid>https://orcid.org/0000-0002-1881-4534</orcidid><orcidid>https://orcid.org/0000-0001-8604-9689</orcidid><orcidid>https://orcid.org/0000-0001-8038-745X</orcidid><orcidid>https://orcid.org/000000018277893X</orcidid><orcidid>https://orcid.org/0000000294001500</orcidid><orcidid>https://orcid.org/0000000218814534</orcidid><orcidid>https://orcid.org/000000018038745X</orcidid><orcidid>https://orcid.org/0000000186049689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-05, Vol.145 (17), p.9596-9606
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1969926
source ACS Publications
subjects anion redox
dual-site substitution
ENERGY STORAGE
ions
lattices
oxygen
redox reactions
sodium ion batteries
transition metals
title Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20High%20Capacity%20and%20Zero%20Strain%20in%20Layered%20Oxide%20Cathodes%20via%20Lithium%20Dual-Site%20Substitution%20for%20Sodium-Ion%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wu,%20Zhonghan&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2023-05-03&rft.volume=145&rft.issue=17&rft.spage=9596&rft.epage=9606&rft.pages=9596-9606&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c00117&rft_dat=%3Cproquest_osti_%3E2801979259%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801979259&rft_id=info:pmid/37058227&rfr_iscdi=true