Modeling Electrochemical and Rheological Characteristics of Suspension-Based Electrodes for Redox Flow Cells
Flowable suspension-based electrodes (FSEs) have gained attention in recent years, as the integration of solid materials into electrochemical flow cells can offer improved performance and flexible operation. However, under conditions that engender favorable electrochemical properties (e.g., high par...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2023-05, Vol.170 (5), p.50532 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 50532 |
container_title | Journal of the Electrochemical Society |
container_volume | 170 |
creator | Majji, Madhu V. Neyhouse, Bertrand J. Matteucci, Nicholas J. Lennon, Kyle R. Mallia, Christopher T. Fenton Jr, Alexis M. Swan, James W. Brushett, Fikile R. |
description | Flowable suspension-based electrodes (FSEs) have gained attention in recent years, as the integration of solid materials into electrochemical flow cells can offer improved performance and flexible operation. However, under conditions that engender favorable electrochemical properties (e.g., high particle loading, high conductivity, high surface area), FSEs can exhibit non-Newtonian characteristics that impose large pumping losses and flow-dependent transport rates. These multifaceted trade-offs motivate the use of models to broadly explore scaling relationships and better understand design rules for electrochemical devices. To this end, we present a one-dimensional model, integrating porous electrode theory with FSE rheology as well as flow-dependent electron and mass transport under pressure-driven flow. We study FSE behavior as a function of material properties and operating conditions, identifying key dimensionless groups that describe the underlying physical processes. We assess flow cell performance by quantifying electrode polarization and relative pumping losses, establishing generalized property-performance relationships for FSEs. Importantly, we expound relevant operating regimes—based on a subset of dimensionless groups—that inform practical operating envelopes, ultimately helping to guide FSE and cell engineering for electrochemical systems. |
doi_str_mv | 10.1149/1945-7111/accb74 |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1968957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesaccb74</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-cafd59f7c55fdee7f26b09f6034cc1f15048685a28709d705db0c08cae12c4e3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwM1rMhNpJHCcjRC0gFSGV7pZ7Prep3LiyUwH_npQAG9Ppnd57uvsIuebsjvO8mvAqF4nknE80wErmJ2T0tzolI8Z4luSF4OfkIsZtL3mZyxFxL96ga9o1nTqELnjY4K4B7ahuDV1s0Du__tb1RgcNHYYmdg1E6i19O8Q9trHxbfKgI5rfDoORWh_oAo3_oDPn32mNzsVLcma1i3j1M8dkOZsu66dk_vr4XN_PE8hY2iWgrRGVlSCENYjSpsWKVbZgWQ7ALRcsL4tS6LSUrDKSCbNiwErQyFPIMRuTm6HW95eqCE2HsAHftv1xildFWQnZm9hgguBjDGjVPjQ7HT4VZ-pIVB3xqSM-NRDtI7dDpPF7tfWH0PZP_G__AtdqeWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Electrochemical and Rheological Characteristics of Suspension-Based Electrodes for Redox Flow Cells</title><source>IOP Publishing Journals</source><creator>Majji, Madhu V. ; Neyhouse, Bertrand J. ; Matteucci, Nicholas J. ; Lennon, Kyle R. ; Mallia, Christopher T. ; Fenton Jr, Alexis M. ; Swan, James W. ; Brushett, Fikile R.</creator><creatorcontrib>Majji, Madhu V. ; Neyhouse, Bertrand J. ; Matteucci, Nicholas J. ; Lennon, Kyle R. ; Mallia, Christopher T. ; Fenton Jr, Alexis M. ; Swan, James W. ; Brushett, Fikile R.</creatorcontrib><description>Flowable suspension-based electrodes (FSEs) have gained attention in recent years, as the integration of solid materials into electrochemical flow cells can offer improved performance and flexible operation. However, under conditions that engender favorable electrochemical properties (e.g., high particle loading, high conductivity, high surface area), FSEs can exhibit non-Newtonian characteristics that impose large pumping losses and flow-dependent transport rates. These multifaceted trade-offs motivate the use of models to broadly explore scaling relationships and better understand design rules for electrochemical devices. To this end, we present a one-dimensional model, integrating porous electrode theory with FSE rheology as well as flow-dependent electron and mass transport under pressure-driven flow. We study FSE behavior as a function of material properties and operating conditions, identifying key dimensionless groups that describe the underlying physical processes. We assess flow cell performance by quantifying electrode polarization and relative pumping losses, establishing generalized property-performance relationships for FSEs. Importantly, we expound relevant operating regimes—based on a subset of dimensionless groups—that inform practical operating envelopes, ultimately helping to guide FSE and cell engineering for electrochemical systems.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/accb74</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>Electrochemical Engineering ; Flowable suspension-based electrodes ; redox flow cells ; rheology ; semi-solid electrodes ; slurry electrodes</subject><ispartof>Journal of the Electrochemical Society, 2023-05, Vol.170 (5), p.50532</ispartof><rights>2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-cafd59f7c55fdee7f26b09f6034cc1f15048685a28709d705db0c08cae12c4e3</cites><orcidid>0000-0003-2195-9408 ; 0000-0002-1251-5461 ; 0000-0002-7361-6637 ; 0000-0002-5312-3149 ; 0000-0001-6747-8197 ; 0000-0003-0480-4711 ; 0000000273616637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/accb74/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1968957$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Majji, Madhu V.</creatorcontrib><creatorcontrib>Neyhouse, Bertrand J.</creatorcontrib><creatorcontrib>Matteucci, Nicholas J.</creatorcontrib><creatorcontrib>Lennon, Kyle R.</creatorcontrib><creatorcontrib>Mallia, Christopher T.</creatorcontrib><creatorcontrib>Fenton Jr, Alexis M.</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><creatorcontrib>Brushett, Fikile R.</creatorcontrib><title>Modeling Electrochemical and Rheological Characteristics of Suspension-Based Electrodes for Redox Flow Cells</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Flowable suspension-based electrodes (FSEs) have gained attention in recent years, as the integration of solid materials into electrochemical flow cells can offer improved performance and flexible operation. However, under conditions that engender favorable electrochemical properties (e.g., high particle loading, high conductivity, high surface area), FSEs can exhibit non-Newtonian characteristics that impose large pumping losses and flow-dependent transport rates. These multifaceted trade-offs motivate the use of models to broadly explore scaling relationships and better understand design rules for electrochemical devices. To this end, we present a one-dimensional model, integrating porous electrode theory with FSE rheology as well as flow-dependent electron and mass transport under pressure-driven flow. We study FSE behavior as a function of material properties and operating conditions, identifying key dimensionless groups that describe the underlying physical processes. We assess flow cell performance by quantifying electrode polarization and relative pumping losses, establishing generalized property-performance relationships for FSEs. Importantly, we expound relevant operating regimes—based on a subset of dimensionless groups—that inform practical operating envelopes, ultimately helping to guide FSE and cell engineering for electrochemical systems.</description><subject>Electrochemical Engineering</subject><subject>Flowable suspension-based electrodes</subject><subject>redox flow cells</subject><subject>rheology</subject><subject>semi-solid electrodes</subject><subject>slurry electrodes</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kDFPwzAQhS0EEqWwM1rMhNpJHCcjRC0gFSGV7pZ7Prep3LiyUwH_npQAG9Ppnd57uvsIuebsjvO8mvAqF4nknE80wErmJ2T0tzolI8Z4luSF4OfkIsZtL3mZyxFxL96ga9o1nTqELnjY4K4B7ahuDV1s0Du__tb1RgcNHYYmdg1E6i19O8Q9trHxbfKgI5rfDoORWh_oAo3_oDPn32mNzsVLcma1i3j1M8dkOZsu66dk_vr4XN_PE8hY2iWgrRGVlSCENYjSpsWKVbZgWQ7ALRcsL4tS6LSUrDKSCbNiwErQyFPIMRuTm6HW95eqCE2HsAHftv1xildFWQnZm9hgguBjDGjVPjQ7HT4VZ-pIVB3xqSM-NRDtI7dDpPF7tfWH0PZP_G__AtdqeWQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Majji, Madhu V.</creator><creator>Neyhouse, Bertrand J.</creator><creator>Matteucci, Nicholas J.</creator><creator>Lennon, Kyle R.</creator><creator>Mallia, Christopher T.</creator><creator>Fenton Jr, Alexis M.</creator><creator>Swan, James W.</creator><creator>Brushett, Fikile R.</creator><general>IOP Publishing</general><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2195-9408</orcidid><orcidid>https://orcid.org/0000-0002-1251-5461</orcidid><orcidid>https://orcid.org/0000-0002-7361-6637</orcidid><orcidid>https://orcid.org/0000-0002-5312-3149</orcidid><orcidid>https://orcid.org/0000-0001-6747-8197</orcidid><orcidid>https://orcid.org/0000-0003-0480-4711</orcidid><orcidid>https://orcid.org/0000000273616637</orcidid></search><sort><creationdate>20230501</creationdate><title>Modeling Electrochemical and Rheological Characteristics of Suspension-Based Electrodes for Redox Flow Cells</title><author>Majji, Madhu V. ; Neyhouse, Bertrand J. ; Matteucci, Nicholas J. ; Lennon, Kyle R. ; Mallia, Christopher T. ; Fenton Jr, Alexis M. ; Swan, James W. ; Brushett, Fikile R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-cafd59f7c55fdee7f26b09f6034cc1f15048685a28709d705db0c08cae12c4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrochemical Engineering</topic><topic>Flowable suspension-based electrodes</topic><topic>redox flow cells</topic><topic>rheology</topic><topic>semi-solid electrodes</topic><topic>slurry electrodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majji, Madhu V.</creatorcontrib><creatorcontrib>Neyhouse, Bertrand J.</creatorcontrib><creatorcontrib>Matteucci, Nicholas J.</creatorcontrib><creatorcontrib>Lennon, Kyle R.</creatorcontrib><creatorcontrib>Mallia, Christopher T.</creatorcontrib><creatorcontrib>Fenton Jr, Alexis M.</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><creatorcontrib>Brushett, Fikile R.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majji, Madhu V.</au><au>Neyhouse, Bertrand J.</au><au>Matteucci, Nicholas J.</au><au>Lennon, Kyle R.</au><au>Mallia, Christopher T.</au><au>Fenton Jr, Alexis M.</au><au>Swan, James W.</au><au>Brushett, Fikile R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Electrochemical and Rheological Characteristics of Suspension-Based Electrodes for Redox Flow Cells</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>170</volume><issue>5</issue><spage>50532</spage><pages>50532-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Flowable suspension-based electrodes (FSEs) have gained attention in recent years, as the integration of solid materials into electrochemical flow cells can offer improved performance and flexible operation. However, under conditions that engender favorable electrochemical properties (e.g., high particle loading, high conductivity, high surface area), FSEs can exhibit non-Newtonian characteristics that impose large pumping losses and flow-dependent transport rates. These multifaceted trade-offs motivate the use of models to broadly explore scaling relationships and better understand design rules for electrochemical devices. To this end, we present a one-dimensional model, integrating porous electrode theory with FSE rheology as well as flow-dependent electron and mass transport under pressure-driven flow. We study FSE behavior as a function of material properties and operating conditions, identifying key dimensionless groups that describe the underlying physical processes. We assess flow cell performance by quantifying electrode polarization and relative pumping losses, establishing generalized property-performance relationships for FSEs. Importantly, we expound relevant operating regimes—based on a subset of dimensionless groups—that inform practical operating envelopes, ultimately helping to guide FSE and cell engineering for electrochemical systems.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1149/1945-7111/accb74</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2195-9408</orcidid><orcidid>https://orcid.org/0000-0002-1251-5461</orcidid><orcidid>https://orcid.org/0000-0002-7361-6637</orcidid><orcidid>https://orcid.org/0000-0002-5312-3149</orcidid><orcidid>https://orcid.org/0000-0001-6747-8197</orcidid><orcidid>https://orcid.org/0000-0003-0480-4711</orcidid><orcidid>https://orcid.org/0000000273616637</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2023-05, Vol.170 (5), p.50532 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_osti_scitechconnect_1968957 |
source | IOP Publishing Journals |
subjects | Electrochemical Engineering Flowable suspension-based electrodes redox flow cells rheology semi-solid electrodes slurry electrodes |
title | Modeling Electrochemical and Rheological Characteristics of Suspension-Based Electrodes for Redox Flow Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Electrochemical%20and%20Rheological%20Characteristics%20of%20Suspension-Based%20Electrodes%20for%20Redox%20Flow%20Cells&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Majji,%20Madhu%20V.&rft.date=2023-05-01&rft.volume=170&rft.issue=5&rft.spage=50532&rft.pages=50532-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/accb74&rft_dat=%3Ciop_osti_%3Ejesaccb74%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |