Characterization of Hole States at the Zn-Doped Hematite/Water Interface from Ab Initio Simulations

Hole states at the surface of hematite (α-Fe2O3) are highly influential in the material’s performance as a photoanode for the oxygen evolution reaction. Zn-doping of hematite is known to both lower the overpotential for oxygen evolution and introduce hole carriers near the surface. In this work, hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2023-04, Vol.13 (8), p.5298-5306
Hauptverfasser: Goldsmith, Zachary K., Ding, Zhutian, Selloni, Annabella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5306
container_issue 8
container_start_page 5298
container_title ACS catalysis
container_volume 13
creator Goldsmith, Zachary K.
Ding, Zhutian
Selloni, Annabella
description Hole states at the surface of hematite (α-Fe2O3) are highly influential in the material’s performance as a photoanode for the oxygen evolution reaction. Zn-doping of hematite is known to both lower the overpotential for oxygen evolution and introduce hole carriers near the surface. In this work, hole states at the aqueous interface of hematite (0001) were characterized using density functional theory-based ab initio molecular dynamics (AIMD) together with hybrid density functional theory (DFT) calculations of the electronic structure. PBE0 with 12% exact exchange calculations of Zn-doped hematite (0001) slabs in vacuum revealed a hole state within the band gap of hematite, which was spatially localized on a Fe–O moiety in an adjacent layer of the slab. AIMD of the (0001) slab in contact with water was propagated at the PBE+D3 and PBE+U+D3 levels of theory, with hybrid PBE0 calculations performed on snapshots every 200 fs. Under both protocols we observed the fluctuation of the hole state energy within the band gap and the localization of the hole at the aqueous interface. Zn doping had an overall marginal effect on the interfacial hydration structure and hydrogen bonding dynamics. These calculations showed that Zn doping introduces surface-local hole states in the band gap at energies close to the O2/H2O redox level, providing atomistic insights into the lower overpotential observed for Zn-doped hematite and more broadly the potential role of surface-local hole states in driving water oxidation.
doi_str_mv 10.1021/acscatal.3c00357
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1968382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a016413876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-be8ce6e84f243c02a24609c84099c9fe3ad8218c0b0210f168f8e438669e2a663</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqb17DJ7dNl-bJsdSPyoUPFQRvIQ0ndAtu5uSpAf99UZbwYtzmBlm3jzmPYSuKRlTwujEuuRstu2YO0J4PT1DA0bruqoFr8__9JdolNKOlBC1VFMyQG6-tdG6DLH5tLkJPQ4eL0ILeJVthoRtxnkL-L2v7sIeNngBXcFlmLyVdcRPfcneOsA-hg7P1mXSFB68arpD-8OYrtCFt22C0akO0evD_ct8US2fH5_ms2VludC5WoNyIEEJz0TRwSwTkminBNHaaQ_cbhSjypF1kUw8lcorEFxJqYFZKfkQ3Rx5Q8qNSa586bYu9D24bKiWiitWQOQIcjGkFMGbfWw6Gz8MJebbTPNrpjmZWU5ujydlY3bhEPui4n_4F6C2d9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of Hole States at the Zn-Doped Hematite/Water Interface from Ab Initio Simulations</title><source>ACS Publications</source><creator>Goldsmith, Zachary K. ; Ding, Zhutian ; Selloni, Annabella</creator><creatorcontrib>Goldsmith, Zachary K. ; Ding, Zhutian ; Selloni, Annabella ; Princeton Univ., NJ (United States)</creatorcontrib><description>Hole states at the surface of hematite (α-Fe2O3) are highly influential in the material’s performance as a photoanode for the oxygen evolution reaction. Zn-doping of hematite is known to both lower the overpotential for oxygen evolution and introduce hole carriers near the surface. In this work, hole states at the aqueous interface of hematite (0001) were characterized using density functional theory-based ab initio molecular dynamics (AIMD) together with hybrid density functional theory (DFT) calculations of the electronic structure. PBE0 with 12% exact exchange calculations of Zn-doped hematite (0001) slabs in vacuum revealed a hole state within the band gap of hematite, which was spatially localized on a Fe–O moiety in an adjacent layer of the slab. AIMD of the (0001) slab in contact with water was propagated at the PBE+D3 and PBE+U+D3 levels of theory, with hybrid PBE0 calculations performed on snapshots every 200 fs. Under both protocols we observed the fluctuation of the hole state energy within the band gap and the localization of the hole at the aqueous interface. Zn doping had an overall marginal effect on the interfacial hydration structure and hydrogen bonding dynamics. These calculations showed that Zn doping introduces surface-local hole states in the band gap at energies close to the O2/H2O redox level, providing atomistic insights into the lower overpotential observed for Zn-doped hematite and more broadly the potential role of surface-local hole states in driving water oxidation.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.3c00357</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ab initio molecular dynamics ; defect states ; doping ; hematite ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; OER</subject><ispartof>ACS catalysis, 2023-04, Vol.13 (8), p.5298-5306</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-be8ce6e84f243c02a24609c84099c9fe3ad8218c0b0210f168f8e438669e2a663</citedby><cites>FETCH-LOGICAL-a349t-be8ce6e84f243c02a24609c84099c9fe3ad8218c0b0210f168f8e438669e2a663</cites><orcidid>0000-0001-5896-3158 ; 0000-0002-5556-4079 ; 0000000158963158 ; 0000000255564079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.3c00357$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.3c00357$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1968382$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldsmith, Zachary K.</creatorcontrib><creatorcontrib>Ding, Zhutian</creatorcontrib><creatorcontrib>Selloni, Annabella</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Characterization of Hole States at the Zn-Doped Hematite/Water Interface from Ab Initio Simulations</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Hole states at the surface of hematite (α-Fe2O3) are highly influential in the material’s performance as a photoanode for the oxygen evolution reaction. Zn-doping of hematite is known to both lower the overpotential for oxygen evolution and introduce hole carriers near the surface. In this work, hole states at the aqueous interface of hematite (0001) were characterized using density functional theory-based ab initio molecular dynamics (AIMD) together with hybrid density functional theory (DFT) calculations of the electronic structure. PBE0 with 12% exact exchange calculations of Zn-doped hematite (0001) slabs in vacuum revealed a hole state within the band gap of hematite, which was spatially localized on a Fe–O moiety in an adjacent layer of the slab. AIMD of the (0001) slab in contact with water was propagated at the PBE+D3 and PBE+U+D3 levels of theory, with hybrid PBE0 calculations performed on snapshots every 200 fs. Under both protocols we observed the fluctuation of the hole state energy within the band gap and the localization of the hole at the aqueous interface. Zn doping had an overall marginal effect on the interfacial hydration structure and hydrogen bonding dynamics. These calculations showed that Zn doping introduces surface-local hole states in the band gap at energies close to the O2/H2O redox level, providing atomistic insights into the lower overpotential observed for Zn-doped hematite and more broadly the potential role of surface-local hole states in driving water oxidation.</description><subject>ab initio molecular dynamics</subject><subject>defect states</subject><subject>doping</subject><subject>hematite</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>OER</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgqb17DJ7dNl-bJsdSPyoUPFQRvIQ0ndAtu5uSpAf99UZbwYtzmBlm3jzmPYSuKRlTwujEuuRstu2YO0J4PT1DA0bruqoFr8__9JdolNKOlBC1VFMyQG6-tdG6DLH5tLkJPQ4eL0ILeJVthoRtxnkL-L2v7sIeNngBXcFlmLyVdcRPfcneOsA-hg7P1mXSFB68arpD-8OYrtCFt22C0akO0evD_ct8US2fH5_ms2VludC5WoNyIEEJz0TRwSwTkminBNHaaQ_cbhSjypF1kUw8lcorEFxJqYFZKfkQ3Rx5Q8qNSa586bYu9D24bKiWiitWQOQIcjGkFMGbfWw6Gz8MJebbTPNrpjmZWU5ujydlY3bhEPui4n_4F6C2d9c</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Goldsmith, Zachary K.</creator><creator>Ding, Zhutian</creator><creator>Selloni, Annabella</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5896-3158</orcidid><orcidid>https://orcid.org/0000-0002-5556-4079</orcidid><orcidid>https://orcid.org/0000000158963158</orcidid><orcidid>https://orcid.org/0000000255564079</orcidid></search><sort><creationdate>20230421</creationdate><title>Characterization of Hole States at the Zn-Doped Hematite/Water Interface from Ab Initio Simulations</title><author>Goldsmith, Zachary K. ; Ding, Zhutian ; Selloni, Annabella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-be8ce6e84f243c02a24609c84099c9fe3ad8218c0b0210f168f8e438669e2a663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ab initio molecular dynamics</topic><topic>defect states</topic><topic>doping</topic><topic>hematite</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>OER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldsmith, Zachary K.</creatorcontrib><creatorcontrib>Ding, Zhutian</creatorcontrib><creatorcontrib>Selloni, Annabella</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldsmith, Zachary K.</au><au>Ding, Zhutian</au><au>Selloni, Annabella</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Hole States at the Zn-Doped Hematite/Water Interface from Ab Initio Simulations</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><spage>5298</spage><epage>5306</epage><pages>5298-5306</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Hole states at the surface of hematite (α-Fe2O3) are highly influential in the material’s performance as a photoanode for the oxygen evolution reaction. Zn-doping of hematite is known to both lower the overpotential for oxygen evolution and introduce hole carriers near the surface. In this work, hole states at the aqueous interface of hematite (0001) were characterized using density functional theory-based ab initio molecular dynamics (AIMD) together with hybrid density functional theory (DFT) calculations of the electronic structure. PBE0 with 12% exact exchange calculations of Zn-doped hematite (0001) slabs in vacuum revealed a hole state within the band gap of hematite, which was spatially localized on a Fe–O moiety in an adjacent layer of the slab. AIMD of the (0001) slab in contact with water was propagated at the PBE+D3 and PBE+U+D3 levels of theory, with hybrid PBE0 calculations performed on snapshots every 200 fs. Under both protocols we observed the fluctuation of the hole state energy within the band gap and the localization of the hole at the aqueous interface. Zn doping had an overall marginal effect on the interfacial hydration structure and hydrogen bonding dynamics. These calculations showed that Zn doping introduces surface-local hole states in the band gap at energies close to the O2/H2O redox level, providing atomistic insights into the lower overpotential observed for Zn-doped hematite and more broadly the potential role of surface-local hole states in driving water oxidation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.3c00357</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5896-3158</orcidid><orcidid>https://orcid.org/0000-0002-5556-4079</orcidid><orcidid>https://orcid.org/0000000158963158</orcidid><orcidid>https://orcid.org/0000000255564079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2023-04, Vol.13 (8), p.5298-5306
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_1968382
source ACS Publications
subjects ab initio molecular dynamics
defect states
doping
hematite
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OER
title Characterization of Hole States at the Zn-Doped Hematite/Water Interface from Ab Initio Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Hole%20States%20at%20the%20Zn-Doped%20Hematite/Water%20Interface%20from%20Ab%20Initio%20Simulations&rft.jtitle=ACS%20catalysis&rft.au=Goldsmith,%20Zachary%20K.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2023-04-21&rft.volume=13&rft.issue=8&rft.spage=5298&rft.epage=5306&rft.pages=5298-5306&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.3c00357&rft_dat=%3Cacs_osti_%3Ea016413876%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true