DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water

Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-04, Vol.158 (13), p.134715
Hauptverfasser: Liang, Zhu, Vo, Trung, Schweighofer, Karl J, Benjamin, Ilan, Schlossman, Mark L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 134715
container_title The Journal of chemical physics
container_volume 158
creator Liang, Zhu
Vo, Trung
Schweighofer, Karl J
Benjamin, Ilan
Schlossman, Mark L
description Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes.
doi_str_mv 10.1063/5.0138019
format Article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1968380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37031143</sourcerecordid><originalsourceid>FETCH-LOGICAL-o503-4716c520c97e471d16eb29c8c8e4027a0092c53d9451ed4e8f7f3f9d47888e7c3</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMotlYP_gEJXmXrZLO7SbxJrVYo6KH3JZtk28huUrKp2qu_3EgVT_PezMfweAhdEpgSqOhtOQVCORBxhMYEuMhYJeAYjQFykokKqhE6G4Y3ACAsL07RiDKghBR0jL4e5otXnGHzGYNUUbqIG-u0dWscPY7BvsvOpGWXLhvprDZ4HjC9wXf4UQ7_sFTK99sEGI2bPVbeKRNiMtKtd50MuPfRejdg3-LNXgf54_CHjCaco5NWdoO5-J0TtHqcr2aLbPny9Dy7X2a-BJoVjFSqzEEJZpLWpDJNLhRX3BSQMwkgclVSLYqSGF0Y3rKWtkIXjHNumKITdH1464do60HZaNQm5XRGxZqIiqcGE3R1gLa7pje63gbby7Cv_wqj3xYBa20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liang, Zhu ; Vo, Trung ; Schweighofer, Karl J ; Benjamin, Ilan ; Schlossman, Mark L</creator><creatorcontrib>Liang, Zhu ; Vo, Trung ; Schweighofer, Karl J ; Benjamin, Ilan ; Schlossman, Mark L</creatorcontrib><description>Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0138019</identifier><identifier>PMID: 37031143</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2023-04, Vol.158 (13), p.134715</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0056-4925 ; 0000-0003-4051-7656 ; 0000-0001-5266-5408 ; 0000-0003-3238-1250 ; 0000-0003-4026-8899 ; 0000000332381250 ; 0000000152665408 ; 0000000340268899 ; 0000000340517656 ; 0000000300564925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37031143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1968380$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Zhu</creatorcontrib><creatorcontrib>Vo, Trung</creatorcontrib><creatorcontrib>Schweighofer, Karl J</creatorcontrib><creatorcontrib>Benjamin, Ilan</creatorcontrib><creatorcontrib>Schlossman, Mark L</creatorcontrib><title>DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMotlYP_gEJXmXrZLO7SbxJrVYo6KH3JZtk28huUrKp2qu_3EgVT_PezMfweAhdEpgSqOhtOQVCORBxhMYEuMhYJeAYjQFykokKqhE6G4Y3ACAsL07RiDKghBR0jL4e5otXnGHzGYNUUbqIG-u0dWscPY7BvsvOpGWXLhvprDZ4HjC9wXf4UQ7_sFTK99sEGI2bPVbeKRNiMtKtd50MuPfRejdg3-LNXgf54_CHjCaco5NWdoO5-J0TtHqcr2aLbPny9Dy7X2a-BJoVjFSqzEEJZpLWpDJNLhRX3BSQMwkgclVSLYqSGF0Y3rKWtkIXjHNumKITdH1464do60HZaNQm5XRGxZqIiqcGE3R1gLa7pje63gbby7Cv_wqj3xYBa20</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>Liang, Zhu</creator><creator>Vo, Trung</creator><creator>Schweighofer, Karl J</creator><creator>Benjamin, Ilan</creator><creator>Schlossman, Mark L</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0056-4925</orcidid><orcidid>https://orcid.org/0000-0003-4051-7656</orcidid><orcidid>https://orcid.org/0000-0001-5266-5408</orcidid><orcidid>https://orcid.org/0000-0003-3238-1250</orcidid><orcidid>https://orcid.org/0000-0003-4026-8899</orcidid><orcidid>https://orcid.org/0000000332381250</orcidid><orcidid>https://orcid.org/0000000152665408</orcidid><orcidid>https://orcid.org/0000000340268899</orcidid><orcidid>https://orcid.org/0000000340517656</orcidid><orcidid>https://orcid.org/0000000300564925</orcidid></search><sort><creationdate>20230407</creationdate><title>DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water</title><author>Liang, Zhu ; Vo, Trung ; Schweighofer, Karl J ; Benjamin, Ilan ; Schlossman, Mark L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o503-4716c520c97e471d16eb29c8c8e4027a0092c53d9451ed4e8f7f3f9d47888e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhu</creatorcontrib><creatorcontrib>Vo, Trung</creatorcontrib><creatorcontrib>Schweighofer, Karl J</creatorcontrib><creatorcontrib>Benjamin, Ilan</creatorcontrib><creatorcontrib>Schlossman, Mark L</creatorcontrib><collection>PubMed</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhu</au><au>Vo, Trung</au><au>Schweighofer, Karl J</au><au>Benjamin, Ilan</au><au>Schlossman, Mark L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-04-07</date><risdate>2023</risdate><volume>158</volume><issue>13</issue><spage>134715</spage><pages>134715-</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37031143</pmid><doi>10.1063/5.0138019</doi><orcidid>https://orcid.org/0000-0003-0056-4925</orcidid><orcidid>https://orcid.org/0000-0003-4051-7656</orcidid><orcidid>https://orcid.org/0000-0001-5266-5408</orcidid><orcidid>https://orcid.org/0000-0003-3238-1250</orcidid><orcidid>https://orcid.org/0000-0003-4026-8899</orcidid><orcidid>https://orcid.org/0000000332381250</orcidid><orcidid>https://orcid.org/0000000152665408</orcidid><orcidid>https://orcid.org/0000000340268899</orcidid><orcidid>https://orcid.org/0000000340517656</orcidid><orcidid>https://orcid.org/0000000300564925</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-04, Vol.158 (13), p.134715
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1968380
source AIP Journals Complete; Alma/SFX Local Collection
title DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DEHP%20-%20extractant%20binding%20to%20trivalent%20lanthanide%20Er%203+%20:%20Fast%20binding%20accompanied%20by%20concerted%20angular%20motions%20of%20hydration%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Liang,%20Zhu&rft.date=2023-04-07&rft.volume=158&rft.issue=13&rft.spage=134715&rft.pages=134715-&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/5.0138019&rft_dat=%3Cpubmed_osti_%3E37031143%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37031143&rfr_iscdi=true