DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water
Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. H...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-04, Vol.158 (13), p.134715 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 134715 |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Liang, Zhu Vo, Trung Schweighofer, Karl J Benjamin, Ilan Schlossman, Mark L |
description | Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er
binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er
than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes. |
doi_str_mv | 10.1063/5.0138019 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1968380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37031143</sourcerecordid><originalsourceid>FETCH-LOGICAL-o503-4716c520c97e471d16eb29c8c8e4027a0092c53d9451ed4e8f7f3f9d47888e7c3</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMotlYP_gEJXmXrZLO7SbxJrVYo6KH3JZtk28huUrKp2qu_3EgVT_PezMfweAhdEpgSqOhtOQVCORBxhMYEuMhYJeAYjQFykokKqhE6G4Y3ACAsL07RiDKghBR0jL4e5otXnGHzGYNUUbqIG-u0dWscPY7BvsvOpGWXLhvprDZ4HjC9wXf4UQ7_sFTK99sEGI2bPVbeKRNiMtKtd50MuPfRejdg3-LNXgf54_CHjCaco5NWdoO5-J0TtHqcr2aLbPny9Dy7X2a-BJoVjFSqzEEJZpLWpDJNLhRX3BSQMwkgclVSLYqSGF0Y3rKWtkIXjHNumKITdH1464do60HZaNQm5XRGxZqIiqcGE3R1gLa7pje63gbby7Cv_wqj3xYBa20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liang, Zhu ; Vo, Trung ; Schweighofer, Karl J ; Benjamin, Ilan ; Schlossman, Mark L</creator><creatorcontrib>Liang, Zhu ; Vo, Trung ; Schweighofer, Karl J ; Benjamin, Ilan ; Schlossman, Mark L</creatorcontrib><description>Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er
binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er
than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0138019</identifier><identifier>PMID: 37031143</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2023-04, Vol.158 (13), p.134715</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0056-4925 ; 0000-0003-4051-7656 ; 0000-0001-5266-5408 ; 0000-0003-3238-1250 ; 0000-0003-4026-8899 ; 0000000332381250 ; 0000000152665408 ; 0000000340268899 ; 0000000340517656 ; 0000000300564925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37031143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1968380$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Zhu</creatorcontrib><creatorcontrib>Vo, Trung</creatorcontrib><creatorcontrib>Schweighofer, Karl J</creatorcontrib><creatorcontrib>Benjamin, Ilan</creatorcontrib><creatorcontrib>Schlossman, Mark L</creatorcontrib><title>DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er
binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er
than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMotlYP_gEJXmXrZLO7SbxJrVYo6KH3JZtk28huUrKp2qu_3EgVT_PezMfweAhdEpgSqOhtOQVCORBxhMYEuMhYJeAYjQFykokKqhE6G4Y3ACAsL07RiDKghBR0jL4e5otXnGHzGYNUUbqIG-u0dWscPY7BvsvOpGWXLhvprDZ4HjC9wXf4UQ7_sFTK99sEGI2bPVbeKRNiMtKtd50MuPfRejdg3-LNXgf54_CHjCaco5NWdoO5-J0TtHqcr2aLbPny9Dy7X2a-BJoVjFSqzEEJZpLWpDJNLhRX3BSQMwkgclVSLYqSGF0Y3rKWtkIXjHNumKITdH1464do60HZaNQm5XRGxZqIiqcGE3R1gLa7pje63gbby7Cv_wqj3xYBa20</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>Liang, Zhu</creator><creator>Vo, Trung</creator><creator>Schweighofer, Karl J</creator><creator>Benjamin, Ilan</creator><creator>Schlossman, Mark L</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0056-4925</orcidid><orcidid>https://orcid.org/0000-0003-4051-7656</orcidid><orcidid>https://orcid.org/0000-0001-5266-5408</orcidid><orcidid>https://orcid.org/0000-0003-3238-1250</orcidid><orcidid>https://orcid.org/0000-0003-4026-8899</orcidid><orcidid>https://orcid.org/0000000332381250</orcidid><orcidid>https://orcid.org/0000000152665408</orcidid><orcidid>https://orcid.org/0000000340268899</orcidid><orcidid>https://orcid.org/0000000340517656</orcidid><orcidid>https://orcid.org/0000000300564925</orcidid></search><sort><creationdate>20230407</creationdate><title>DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water</title><author>Liang, Zhu ; Vo, Trung ; Schweighofer, Karl J ; Benjamin, Ilan ; Schlossman, Mark L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o503-4716c520c97e471d16eb29c8c8e4027a0092c53d9451ed4e8f7f3f9d47888e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhu</creatorcontrib><creatorcontrib>Vo, Trung</creatorcontrib><creatorcontrib>Schweighofer, Karl J</creatorcontrib><creatorcontrib>Benjamin, Ilan</creatorcontrib><creatorcontrib>Schlossman, Mark L</creatorcontrib><collection>PubMed</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhu</au><au>Vo, Trung</au><au>Schweighofer, Karl J</au><au>Benjamin, Ilan</au><au>Schlossman, Mark L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-04-07</date><risdate>2023</risdate><volume>158</volume><issue>13</issue><spage>134715</spage><pages>134715-</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er
binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er
than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37031143</pmid><doi>10.1063/5.0138019</doi><orcidid>https://orcid.org/0000-0003-0056-4925</orcidid><orcidid>https://orcid.org/0000-0003-4051-7656</orcidid><orcidid>https://orcid.org/0000-0001-5266-5408</orcidid><orcidid>https://orcid.org/0000-0003-3238-1250</orcidid><orcidid>https://orcid.org/0000-0003-4026-8899</orcidid><orcidid>https://orcid.org/0000000332381250</orcidid><orcidid>https://orcid.org/0000000152665408</orcidid><orcidid>https://orcid.org/0000000340268899</orcidid><orcidid>https://orcid.org/0000000340517656</orcidid><orcidid>https://orcid.org/0000000300564925</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-04, Vol.158 (13), p.134715 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1968380 |
source | AIP Journals Complete; Alma/SFX Local Collection |
title | DEHP - extractant binding to trivalent lanthanide Er 3+ : Fast binding accompanied by concerted angular motions of hydration water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DEHP%20-%20extractant%20binding%20to%20trivalent%20lanthanide%20Er%203+%20:%20Fast%20binding%20accompanied%20by%20concerted%20angular%20motions%20of%20hydration%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Liang,%20Zhu&rft.date=2023-04-07&rft.volume=158&rft.issue=13&rft.spage=134715&rft.pages=134715-&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/5.0138019&rft_dat=%3Cpubmed_osti_%3E37031143%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37031143&rfr_iscdi=true |