Automated reaction kinetics and network exploration (Arkane): A statistical mechanics, thermodynamics, transition state theory, and master equation software

The open‐source statistical mechanics software described here, Arkane–Automated Reaction Kinetics and Network Exploration–facilitates computations of thermodynamic properties of chemical species, high‐pressure limit reaction rate coefficients, and pressure‐dependent rate coefficient over multi‐well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of chemical kinetics 2023-06, Vol.55 (6), p.300-323
Hauptverfasser: Dana, Alon Grinberg, Johnson, Matthew S., Allen, Joshua W., Sharma, Sandeep, Raman, Sumathy, Liu, Mengjie, Gao, Connie W., Grambow, Colin A., Goldman, Mark J., Ranasinghe, Duminda S., Gillis, Ryan J., Payne, A. Mark, Li, Yi‐Pei, Dong, Xiaorui, Spiekermann, Kevin A., Wu, Haoyang, Dames, Enoch E., Buras, Zachary J., Vandewiele, Nick M., Yee, Nathan W., Merchant, Shamel S., Buesser, Beat, Class, Caleb A., Goldsmith, Franklin, West, Richard H., Green, William H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 6
container_start_page 300
container_title International journal of chemical kinetics
container_volume 55
creator Dana, Alon Grinberg
Johnson, Matthew S.
Allen, Joshua W.
Sharma, Sandeep
Raman, Sumathy
Liu, Mengjie
Gao, Connie W.
Grambow, Colin A.
Goldman, Mark J.
Ranasinghe, Duminda S.
Gillis, Ryan J.
Payne, A. Mark
Li, Yi‐Pei
Dong, Xiaorui
Spiekermann, Kevin A.
Wu, Haoyang
Dames, Enoch E.
Buras, Zachary J.
Vandewiele, Nick M.
Yee, Nathan W.
Merchant, Shamel S.
Buesser, Beat
Class, Caleb A.
Goldsmith, Franklin
West, Richard H.
Green, William H.
description The open‐source statistical mechanics software described here, Arkane–Automated Reaction Kinetics and Network Exploration–facilitates computations of thermodynamic properties of chemical species, high‐pressure limit reaction rate coefficients, and pressure‐dependent rate coefficient over multi‐well molecular potential energy surfaces (PES) including the effects of collisional energy transfer on phenomenological kinetics. Arkane can use estimates to fill in information for molecules or reactions where quantum chemistry information is missing. The software solves the internal energy master equation for complex unimolecular reaction systems. Inputs to the software include converged electronic structure computations performed by the user using a variety of supported software packages (Gaussian, Molpro, Orca, TeraChem, Q‐Chem, Psi4). The software outputs high‐pressure limit rate coefficients and pressure‐dependent phenomenological rate coefficients, as well as computed thermodynamic properties (enthalpy, entropy, and constant pressure heat capacity) with added energy corrections. Some of the key features of Arkane include treatment of 1D, 2D or ND hindered internal rotation modes, treatment of free internal rotation modes, quantum tunneling effect consideration, transition state theory (TST) and Rice‐Ramsperger‐Kassel‐Marcus (RRKM) rate coefficient computations, master equation solution with four implemented methods, inverse‐Laplace transform of high‐pressure limit rate coefficients into the energy domain, energy corrections based on bond‐additivity or isodesmic reactions, automated and efficient PES exploration, and PES sensitivity analysis. The present work describes the design of Arkane, how it should be used, and refers to the theory that it employs. Arkane is distributed via the RMG‐Py software suite (https://github.com/ReactionMechanismGenerator/RMG‐Py).
doi_str_mv 10.1002/kin.21637
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1968115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803947353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3597-ed1d434f29d19c308b7468d5b265228668aa406b3010879883c31629d5402aef3</originalsourceid><addsrcrecordid>eNp1kcFO4zAQhq0VSFtYDryBtXsBiZZxnDgOtwotbLUILnC2XGci0jZ2a7vq9mGQeBaeDDfZKyePre__x_8MIecMJgwgu162dpIxwctvZMSgKse5AHZERlBwOZYgxHdyEsICAKqKFSPyNt1G1-mINfWoTWydpckDY2sC1bamqdw5v6T4b71yXvfAxdQvtcXLGzqlIaa3kHC9oh2aV22T8orGV_Sdq_dWd8PdaxvaXn1Q4AFwfn_V9-h0iOgpbra9_8d7cE3caY8_yHGjVwHP_p-n5OXu9_Ptn_HD0_3sdvowNrxIGbFmdc7zJqtqVhkOcl7mQtbFPBNFlkkhpNY5iDkHBrKspOSGM5HoIodMY8NPyc_B16UkKpg2piTGWYsmKlYJyViRoF8DtPZus8UQ1cJtvU3_UpkEXuUlL3iiLgfKeBeCx0atfdtpv1cM1GFFKo1X9StK7PXA7toV7r8G1d_Z46D4BHhAlTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803947353</pqid></control><display><type>article</type><title>Automated reaction kinetics and network exploration (Arkane): A statistical mechanics, thermodynamics, transition state theory, and master equation software</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dana, Alon Grinberg ; Johnson, Matthew S. ; Allen, Joshua W. ; Sharma, Sandeep ; Raman, Sumathy ; Liu, Mengjie ; Gao, Connie W. ; Grambow, Colin A. ; Goldman, Mark J. ; Ranasinghe, Duminda S. ; Gillis, Ryan J. ; Payne, A. Mark ; Li, Yi‐Pei ; Dong, Xiaorui ; Spiekermann, Kevin A. ; Wu, Haoyang ; Dames, Enoch E. ; Buras, Zachary J. ; Vandewiele, Nick M. ; Yee, Nathan W. ; Merchant, Shamel S. ; Buesser, Beat ; Class, Caleb A. ; Goldsmith, Franklin ; West, Richard H. ; Green, William H.</creator><creatorcontrib>Dana, Alon Grinberg ; Johnson, Matthew S. ; Allen, Joshua W. ; Sharma, Sandeep ; Raman, Sumathy ; Liu, Mengjie ; Gao, Connie W. ; Grambow, Colin A. ; Goldman, Mark J. ; Ranasinghe, Duminda S. ; Gillis, Ryan J. ; Payne, A. Mark ; Li, Yi‐Pei ; Dong, Xiaorui ; Spiekermann, Kevin A. ; Wu, Haoyang ; Dames, Enoch E. ; Buras, Zachary J. ; Vandewiele, Nick M. ; Yee, Nathan W. ; Merchant, Shamel S. ; Buesser, Beat ; Class, Caleb A. ; Goldsmith, Franklin ; West, Richard H. ; Green, William H. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>The open‐source statistical mechanics software described here, Arkane–Automated Reaction Kinetics and Network Exploration–facilitates computations of thermodynamic properties of chemical species, high‐pressure limit reaction rate coefficients, and pressure‐dependent rate coefficient over multi‐well molecular potential energy surfaces (PES) including the effects of collisional energy transfer on phenomenological kinetics. Arkane can use estimates to fill in information for molecules or reactions where quantum chemistry information is missing. The software solves the internal energy master equation for complex unimolecular reaction systems. Inputs to the software include converged electronic structure computations performed by the user using a variety of supported software packages (Gaussian, Molpro, Orca, TeraChem, Q‐Chem, Psi4). The software outputs high‐pressure limit rate coefficients and pressure‐dependent phenomenological rate coefficients, as well as computed thermodynamic properties (enthalpy, entropy, and constant pressure heat capacity) with added energy corrections. Some of the key features of Arkane include treatment of 1D, 2D or ND hindered internal rotation modes, treatment of free internal rotation modes, quantum tunneling effect consideration, transition state theory (TST) and Rice‐Ramsperger‐Kassel‐Marcus (RRKM) rate coefficient computations, master equation solution with four implemented methods, inverse‐Laplace transform of high‐pressure limit rate coefficients into the energy domain, energy corrections based on bond‐additivity or isodesmic reactions, automated and efficient PES exploration, and PES sensitivity analysis. The present work describes the design of Arkane, how it should be used, and refers to the theory that it employs. Arkane is distributed via the RMG‐Py software suite (https://github.com/ReactionMechanismGenerator/RMG‐Py).</description><identifier>ISSN: 0538-8066</identifier><identifier>EISSN: 1097-4601</identifier><identifier>DOI: 10.1002/kin.21637</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Automation ; chemical kinetics ; Chemistry ; Coefficients ; Electronic structure ; Energy ; Energy transfer ; Enthalpy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Internal energy ; Laplace transforms ; Potential energy ; potential energy surface ; Pressure dependence ; pressure‐dependent reactions ; Quantum chemistry ; Quantum tunnelling ; Reaction kinetics ; reaction mechanism generator ; Rotation ; Sensitivity analysis ; Software packages ; Statistical mechanics ; Thermodynamic properties ; Thermodynamics</subject><ispartof>International journal of chemical kinetics, 2023-06, Vol.55 (6), p.300-323</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3597-ed1d434f29d19c308b7468d5b265228668aa406b3010879883c31629d5402aef3</citedby><cites>FETCH-LOGICAL-c3597-ed1d434f29d19c308b7468d5b265228668aa406b3010879883c31629d5402aef3</cites><orcidid>0000-0002-6598-8887 ; 0000-0003-3130-3613 ; 0000-0003-0144-5696 ; 0000-0002-1314-3276 ; 0000-0002-0318-2888 ; 0000-0002-2204-9046 ; 0000-0002-0180-1796 ; 0000-0001-8908-3356 ; 0000-0003-2603-9694 ; 0000-0001-8179-3716 ; 0000-0003-3861-6030 ; 0000-0002-4624-2852 ; 0000-0001-7545-8719 ; 0000-0002-0644-7554 ; 0000-0003-2414-1986 ; 0000-0003-1193-6720 ; 0000-0001-8831-6218 ; 0000-0002-9484-9253 ; 0000-0002-2212-0172 ; 0000000338616030 ; 0000000175458719 ; 0000000324141986 ; 0000000331303613 ; 0000000301445696 ; 0000000203182888 ; 0000000213143276 ; 0000000222120172 ; 0000000206447554 ; 0000000189083356 ; 0000000311936720 ; 0000000246242852 ; 0000000326039694 ; 0000000201801796 ; 0000000181793716 ; 0000000188316218 ; 0000000265988887 ; 0000000294849253 ; 0000000222049046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fkin.21637$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fkin.21637$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1968115$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dana, Alon Grinberg</creatorcontrib><creatorcontrib>Johnson, Matthew S.</creatorcontrib><creatorcontrib>Allen, Joshua W.</creatorcontrib><creatorcontrib>Sharma, Sandeep</creatorcontrib><creatorcontrib>Raman, Sumathy</creatorcontrib><creatorcontrib>Liu, Mengjie</creatorcontrib><creatorcontrib>Gao, Connie W.</creatorcontrib><creatorcontrib>Grambow, Colin A.</creatorcontrib><creatorcontrib>Goldman, Mark J.</creatorcontrib><creatorcontrib>Ranasinghe, Duminda S.</creatorcontrib><creatorcontrib>Gillis, Ryan J.</creatorcontrib><creatorcontrib>Payne, A. Mark</creatorcontrib><creatorcontrib>Li, Yi‐Pei</creatorcontrib><creatorcontrib>Dong, Xiaorui</creatorcontrib><creatorcontrib>Spiekermann, Kevin A.</creatorcontrib><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Dames, Enoch E.</creatorcontrib><creatorcontrib>Buras, Zachary J.</creatorcontrib><creatorcontrib>Vandewiele, Nick M.</creatorcontrib><creatorcontrib>Yee, Nathan W.</creatorcontrib><creatorcontrib>Merchant, Shamel S.</creatorcontrib><creatorcontrib>Buesser, Beat</creatorcontrib><creatorcontrib>Class, Caleb A.</creatorcontrib><creatorcontrib>Goldsmith, Franklin</creatorcontrib><creatorcontrib>West, Richard H.</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Automated reaction kinetics and network exploration (Arkane): A statistical mechanics, thermodynamics, transition state theory, and master equation software</title><title>International journal of chemical kinetics</title><description>The open‐source statistical mechanics software described here, Arkane–Automated Reaction Kinetics and Network Exploration–facilitates computations of thermodynamic properties of chemical species, high‐pressure limit reaction rate coefficients, and pressure‐dependent rate coefficient over multi‐well molecular potential energy surfaces (PES) including the effects of collisional energy transfer on phenomenological kinetics. Arkane can use estimates to fill in information for molecules or reactions where quantum chemistry information is missing. The software solves the internal energy master equation for complex unimolecular reaction systems. Inputs to the software include converged electronic structure computations performed by the user using a variety of supported software packages (Gaussian, Molpro, Orca, TeraChem, Q‐Chem, Psi4). The software outputs high‐pressure limit rate coefficients and pressure‐dependent phenomenological rate coefficients, as well as computed thermodynamic properties (enthalpy, entropy, and constant pressure heat capacity) with added energy corrections. Some of the key features of Arkane include treatment of 1D, 2D or ND hindered internal rotation modes, treatment of free internal rotation modes, quantum tunneling effect consideration, transition state theory (TST) and Rice‐Ramsperger‐Kassel‐Marcus (RRKM) rate coefficient computations, master equation solution with four implemented methods, inverse‐Laplace transform of high‐pressure limit rate coefficients into the energy domain, energy corrections based on bond‐additivity or isodesmic reactions, automated and efficient PES exploration, and PES sensitivity analysis. The present work describes the design of Arkane, how it should be used, and refers to the theory that it employs. Arkane is distributed via the RMG‐Py software suite (https://github.com/ReactionMechanismGenerator/RMG‐Py).</description><subject>Automation</subject><subject>chemical kinetics</subject><subject>Chemistry</subject><subject>Coefficients</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Enthalpy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Internal energy</subject><subject>Laplace transforms</subject><subject>Potential energy</subject><subject>potential energy surface</subject><subject>Pressure dependence</subject><subject>pressure‐dependent reactions</subject><subject>Quantum chemistry</subject><subject>Quantum tunnelling</subject><subject>Reaction kinetics</subject><subject>reaction mechanism generator</subject><subject>Rotation</subject><subject>Sensitivity analysis</subject><subject>Software packages</subject><subject>Statistical mechanics</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0538-8066</issn><issn>1097-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kcFO4zAQhq0VSFtYDryBtXsBiZZxnDgOtwotbLUILnC2XGci0jZ2a7vq9mGQeBaeDDfZKyePre__x_8MIecMJgwgu162dpIxwctvZMSgKse5AHZERlBwOZYgxHdyEsICAKqKFSPyNt1G1-mINfWoTWydpckDY2sC1bamqdw5v6T4b71yXvfAxdQvtcXLGzqlIaa3kHC9oh2aV22T8orGV_Sdq_dWd8PdaxvaXn1Q4AFwfn_V9-h0iOgpbra9_8d7cE3caY8_yHGjVwHP_p-n5OXu9_Ptn_HD0_3sdvowNrxIGbFmdc7zJqtqVhkOcl7mQtbFPBNFlkkhpNY5iDkHBrKspOSGM5HoIodMY8NPyc_B16UkKpg2piTGWYsmKlYJyViRoF8DtPZus8UQ1cJtvU3_UpkEXuUlL3iiLgfKeBeCx0atfdtpv1cM1GFFKo1X9StK7PXA7toV7r8G1d_Z46D4BHhAlTU</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Dana, Alon Grinberg</creator><creator>Johnson, Matthew S.</creator><creator>Allen, Joshua W.</creator><creator>Sharma, Sandeep</creator><creator>Raman, Sumathy</creator><creator>Liu, Mengjie</creator><creator>Gao, Connie W.</creator><creator>Grambow, Colin A.</creator><creator>Goldman, Mark J.</creator><creator>Ranasinghe, Duminda S.</creator><creator>Gillis, Ryan J.</creator><creator>Payne, A. Mark</creator><creator>Li, Yi‐Pei</creator><creator>Dong, Xiaorui</creator><creator>Spiekermann, Kevin A.</creator><creator>Wu, Haoyang</creator><creator>Dames, Enoch E.</creator><creator>Buras, Zachary J.</creator><creator>Vandewiele, Nick M.</creator><creator>Yee, Nathan W.</creator><creator>Merchant, Shamel S.</creator><creator>Buesser, Beat</creator><creator>Class, Caleb A.</creator><creator>Goldsmith, Franklin</creator><creator>West, Richard H.</creator><creator>Green, William H.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6598-8887</orcidid><orcidid>https://orcid.org/0000-0003-3130-3613</orcidid><orcidid>https://orcid.org/0000-0003-0144-5696</orcidid><orcidid>https://orcid.org/0000-0002-1314-3276</orcidid><orcidid>https://orcid.org/0000-0002-0318-2888</orcidid><orcidid>https://orcid.org/0000-0002-2204-9046</orcidid><orcidid>https://orcid.org/0000-0002-0180-1796</orcidid><orcidid>https://orcid.org/0000-0001-8908-3356</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0001-8179-3716</orcidid><orcidid>https://orcid.org/0000-0003-3861-6030</orcidid><orcidid>https://orcid.org/0000-0002-4624-2852</orcidid><orcidid>https://orcid.org/0000-0001-7545-8719</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><orcidid>https://orcid.org/0000-0003-2414-1986</orcidid><orcidid>https://orcid.org/0000-0003-1193-6720</orcidid><orcidid>https://orcid.org/0000-0001-8831-6218</orcidid><orcidid>https://orcid.org/0000-0002-9484-9253</orcidid><orcidid>https://orcid.org/0000-0002-2212-0172</orcidid><orcidid>https://orcid.org/0000000338616030</orcidid><orcidid>https://orcid.org/0000000175458719</orcidid><orcidid>https://orcid.org/0000000324141986</orcidid><orcidid>https://orcid.org/0000000331303613</orcidid><orcidid>https://orcid.org/0000000301445696</orcidid><orcidid>https://orcid.org/0000000203182888</orcidid><orcidid>https://orcid.org/0000000213143276</orcidid><orcidid>https://orcid.org/0000000222120172</orcidid><orcidid>https://orcid.org/0000000206447554</orcidid><orcidid>https://orcid.org/0000000189083356</orcidid><orcidid>https://orcid.org/0000000311936720</orcidid><orcidid>https://orcid.org/0000000246242852</orcidid><orcidid>https://orcid.org/0000000326039694</orcidid><orcidid>https://orcid.org/0000000201801796</orcidid><orcidid>https://orcid.org/0000000181793716</orcidid><orcidid>https://orcid.org/0000000188316218</orcidid><orcidid>https://orcid.org/0000000265988887</orcidid><orcidid>https://orcid.org/0000000294849253</orcidid><orcidid>https://orcid.org/0000000222049046</orcidid></search><sort><creationdate>202306</creationdate><title>Automated reaction kinetics and network exploration (Arkane): A statistical mechanics, thermodynamics, transition state theory, and master equation software</title><author>Dana, Alon Grinberg ; Johnson, Matthew S. ; Allen, Joshua W. ; Sharma, Sandeep ; Raman, Sumathy ; Liu, Mengjie ; Gao, Connie W. ; Grambow, Colin A. ; Goldman, Mark J. ; Ranasinghe, Duminda S. ; Gillis, Ryan J. ; Payne, A. Mark ; Li, Yi‐Pei ; Dong, Xiaorui ; Spiekermann, Kevin A. ; Wu, Haoyang ; Dames, Enoch E. ; Buras, Zachary J. ; Vandewiele, Nick M. ; Yee, Nathan W. ; Merchant, Shamel S. ; Buesser, Beat ; Class, Caleb A. ; Goldsmith, Franklin ; West, Richard H. ; Green, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3597-ed1d434f29d19c308b7468d5b265228668aa406b3010879883c31629d5402aef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>chemical kinetics</topic><topic>Chemistry</topic><topic>Coefficients</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Enthalpy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Internal energy</topic><topic>Laplace transforms</topic><topic>Potential energy</topic><topic>potential energy surface</topic><topic>Pressure dependence</topic><topic>pressure‐dependent reactions</topic><topic>Quantum chemistry</topic><topic>Quantum tunnelling</topic><topic>Reaction kinetics</topic><topic>reaction mechanism generator</topic><topic>Rotation</topic><topic>Sensitivity analysis</topic><topic>Software packages</topic><topic>Statistical mechanics</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dana, Alon Grinberg</creatorcontrib><creatorcontrib>Johnson, Matthew S.</creatorcontrib><creatorcontrib>Allen, Joshua W.</creatorcontrib><creatorcontrib>Sharma, Sandeep</creatorcontrib><creatorcontrib>Raman, Sumathy</creatorcontrib><creatorcontrib>Liu, Mengjie</creatorcontrib><creatorcontrib>Gao, Connie W.</creatorcontrib><creatorcontrib>Grambow, Colin A.</creatorcontrib><creatorcontrib>Goldman, Mark J.</creatorcontrib><creatorcontrib>Ranasinghe, Duminda S.</creatorcontrib><creatorcontrib>Gillis, Ryan J.</creatorcontrib><creatorcontrib>Payne, A. Mark</creatorcontrib><creatorcontrib>Li, Yi‐Pei</creatorcontrib><creatorcontrib>Dong, Xiaorui</creatorcontrib><creatorcontrib>Spiekermann, Kevin A.</creatorcontrib><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Dames, Enoch E.</creatorcontrib><creatorcontrib>Buras, Zachary J.</creatorcontrib><creatorcontrib>Vandewiele, Nick M.</creatorcontrib><creatorcontrib>Yee, Nathan W.</creatorcontrib><creatorcontrib>Merchant, Shamel S.</creatorcontrib><creatorcontrib>Buesser, Beat</creatorcontrib><creatorcontrib>Class, Caleb A.</creatorcontrib><creatorcontrib>Goldsmith, Franklin</creatorcontrib><creatorcontrib>West, Richard H.</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>International journal of chemical kinetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dana, Alon Grinberg</au><au>Johnson, Matthew S.</au><au>Allen, Joshua W.</au><au>Sharma, Sandeep</au><au>Raman, Sumathy</au><au>Liu, Mengjie</au><au>Gao, Connie W.</au><au>Grambow, Colin A.</au><au>Goldman, Mark J.</au><au>Ranasinghe, Duminda S.</au><au>Gillis, Ryan J.</au><au>Payne, A. Mark</au><au>Li, Yi‐Pei</au><au>Dong, Xiaorui</au><au>Spiekermann, Kevin A.</au><au>Wu, Haoyang</au><au>Dames, Enoch E.</au><au>Buras, Zachary J.</au><au>Vandewiele, Nick M.</au><au>Yee, Nathan W.</au><au>Merchant, Shamel S.</au><au>Buesser, Beat</au><au>Class, Caleb A.</au><au>Goldsmith, Franklin</au><au>West, Richard H.</au><au>Green, William H.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated reaction kinetics and network exploration (Arkane): A statistical mechanics, thermodynamics, transition state theory, and master equation software</atitle><jtitle>International journal of chemical kinetics</jtitle><date>2023-06</date><risdate>2023</risdate><volume>55</volume><issue>6</issue><spage>300</spage><epage>323</epage><pages>300-323</pages><issn>0538-8066</issn><eissn>1097-4601</eissn><abstract>The open‐source statistical mechanics software described here, Arkane–Automated Reaction Kinetics and Network Exploration–facilitates computations of thermodynamic properties of chemical species, high‐pressure limit reaction rate coefficients, and pressure‐dependent rate coefficient over multi‐well molecular potential energy surfaces (PES) including the effects of collisional energy transfer on phenomenological kinetics. Arkane can use estimates to fill in information for molecules or reactions where quantum chemistry information is missing. The software solves the internal energy master equation for complex unimolecular reaction systems. Inputs to the software include converged electronic structure computations performed by the user using a variety of supported software packages (Gaussian, Molpro, Orca, TeraChem, Q‐Chem, Psi4). The software outputs high‐pressure limit rate coefficients and pressure‐dependent phenomenological rate coefficients, as well as computed thermodynamic properties (enthalpy, entropy, and constant pressure heat capacity) with added energy corrections. Some of the key features of Arkane include treatment of 1D, 2D or ND hindered internal rotation modes, treatment of free internal rotation modes, quantum tunneling effect consideration, transition state theory (TST) and Rice‐Ramsperger‐Kassel‐Marcus (RRKM) rate coefficient computations, master equation solution with four implemented methods, inverse‐Laplace transform of high‐pressure limit rate coefficients into the energy domain, energy corrections based on bond‐additivity or isodesmic reactions, automated and efficient PES exploration, and PES sensitivity analysis. The present work describes the design of Arkane, how it should be used, and refers to the theory that it employs. Arkane is distributed via the RMG‐Py software suite (https://github.com/ReactionMechanismGenerator/RMG‐Py).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/kin.21637</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6598-8887</orcidid><orcidid>https://orcid.org/0000-0003-3130-3613</orcidid><orcidid>https://orcid.org/0000-0003-0144-5696</orcidid><orcidid>https://orcid.org/0000-0002-1314-3276</orcidid><orcidid>https://orcid.org/0000-0002-0318-2888</orcidid><orcidid>https://orcid.org/0000-0002-2204-9046</orcidid><orcidid>https://orcid.org/0000-0002-0180-1796</orcidid><orcidid>https://orcid.org/0000-0001-8908-3356</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0001-8179-3716</orcidid><orcidid>https://orcid.org/0000-0003-3861-6030</orcidid><orcidid>https://orcid.org/0000-0002-4624-2852</orcidid><orcidid>https://orcid.org/0000-0001-7545-8719</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><orcidid>https://orcid.org/0000-0003-2414-1986</orcidid><orcidid>https://orcid.org/0000-0003-1193-6720</orcidid><orcidid>https://orcid.org/0000-0001-8831-6218</orcidid><orcidid>https://orcid.org/0000-0002-9484-9253</orcidid><orcidid>https://orcid.org/0000-0002-2212-0172</orcidid><orcidid>https://orcid.org/0000000338616030</orcidid><orcidid>https://orcid.org/0000000175458719</orcidid><orcidid>https://orcid.org/0000000324141986</orcidid><orcidid>https://orcid.org/0000000331303613</orcidid><orcidid>https://orcid.org/0000000301445696</orcidid><orcidid>https://orcid.org/0000000203182888</orcidid><orcidid>https://orcid.org/0000000213143276</orcidid><orcidid>https://orcid.org/0000000222120172</orcidid><orcidid>https://orcid.org/0000000206447554</orcidid><orcidid>https://orcid.org/0000000189083356</orcidid><orcidid>https://orcid.org/0000000311936720</orcidid><orcidid>https://orcid.org/0000000246242852</orcidid><orcidid>https://orcid.org/0000000326039694</orcidid><orcidid>https://orcid.org/0000000201801796</orcidid><orcidid>https://orcid.org/0000000181793716</orcidid><orcidid>https://orcid.org/0000000188316218</orcidid><orcidid>https://orcid.org/0000000265988887</orcidid><orcidid>https://orcid.org/0000000294849253</orcidid><orcidid>https://orcid.org/0000000222049046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0538-8066
ispartof International journal of chemical kinetics, 2023-06, Vol.55 (6), p.300-323
issn 0538-8066
1097-4601
language eng
recordid cdi_osti_scitechconnect_1968115
source Wiley Online Library Journals Frontfile Complete
subjects Automation
chemical kinetics
Chemistry
Coefficients
Electronic structure
Energy
Energy transfer
Enthalpy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Internal energy
Laplace transforms
Potential energy
potential energy surface
Pressure dependence
pressure‐dependent reactions
Quantum chemistry
Quantum tunnelling
Reaction kinetics
reaction mechanism generator
Rotation
Sensitivity analysis
Software packages
Statistical mechanics
Thermodynamic properties
Thermodynamics
title Automated reaction kinetics and network exploration (Arkane): A statistical mechanics, thermodynamics, transition state theory, and master equation software
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20reaction%20kinetics%20and%20network%20exploration%20(Arkane):%20A%20statistical%20mechanics,%20thermodynamics,%20transition%20state%20theory,%20and%20master%20equation%C2%A0software&rft.jtitle=International%20journal%20of%20chemical%20kinetics&rft.au=Dana,%20Alon%20Grinberg&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2023-06&rft.volume=55&rft.issue=6&rft.spage=300&rft.epage=323&rft.pages=300-323&rft.issn=0538-8066&rft.eissn=1097-4601&rft_id=info:doi/10.1002/kin.21637&rft_dat=%3Cproquest_osti_%3E2803947353%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803947353&rft_id=info:pmid/&rfr_iscdi=true