Fermionic Partial Tomography via Classical Shadows
We propose a tomographic protocol for estimating any k-body reduced density matrix (k-RDM) of an n-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-09, Vol.127 (11), p.1-110504, Article 110504 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110504 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 127 |
creator | Zhao, Andrew Rubin, Nicholas C. Miyake, Akimasa |
description | We propose a tomographic protocol for estimating any k-body reduced density matrix (k-RDM) of an n-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum-state properties, to the fermionic setting. Our sampling protocol uses randomized measurement settings generated by a discrete group of fermionic Gaussian unitaries, implementable with linear-depth circuits. We prove that estimating all k -RDM elements to additive precision ϵ requires on the order of (nk)k3/2 log (n)/ϵ2 repeated state preparations, which is optimal up to the logarithmic factor. Furthermore, numerical calculations show that our protocol offers a substantial improvement in constant overheads for k ≥ 2 , as compared to prior deterministic strategies. We also adapt our method to particle-number symmetry, wherein the additional circuit depth may be halved at the cost of roughly 2–5 times more repetitions. |
doi_str_mv | 10.1103/PhysRevLett.127.110504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1963683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576657753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-943d15bae25437195e923fb570a3495eee7ac70e35baa19a7839cd24b0e67d813</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqX5BFL162JpuvzVGKVaFg0XoOaXbqpmw3NUkr_ffush7E0zAzDwPzInRN8IQQTO8X9TG-wWEOKU1IIfshx-wEjQiWKpeEsFM0wpiSXGEsz9FFjBuMMSlEOULFDMLW-dbZbGFCcqbJln7rP4PZ1cfs4Ew2bUyMznaL99pU_jteorO1aSJc_dYx-pg9LqfP-fz16WX6MM8tYyzlitGK8JWBgjMqieKgCrpecYkNZV0HII2VGGhnDFFGllTZqmArDEJWJaFjdDPc9TE5Ha1LYGvr2xZs0kQJKkraobsB7YL_2kNMeuuihaYxLfh91AWXQnApeU9v_9GN34e2e6FXnNNSCNkpMSgbfIwB1noX3NaEoyZY93nrP3nrLm895E1_ACXwdGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575538667</pqid></control><display><type>article</type><title>Fermionic Partial Tomography via Classical Shadows</title><source>American Physical Society Journals</source><source>EZB Electronic Journals Library</source><creator>Zhao, Andrew ; Rubin, Nicholas C. ; Miyake, Akimasa</creator><creatorcontrib>Zhao, Andrew ; Rubin, Nicholas C. ; Miyake, Akimasa ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><description>We propose a tomographic protocol for estimating any k-body reduced density matrix (k-RDM) of an n-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum-state properties, to the fermionic setting. Our sampling protocol uses randomized measurement settings generated by a discrete group of fermionic Gaussian unitaries, implementable with linear-depth circuits. We prove that estimating all k -RDM elements to additive precision ϵ requires on the order of (nk)k3/2 log (n)/ϵ2 repeated state preparations, which is optimal up to the logarithmic factor. Furthermore, numerical calculations show that our protocol offers a substantial improvement in constant overheads for k ≥ 2 , as compared to prior deterministic strategies. We also adapt our method to particle-number symmetry, wherein the additional circuit depth may be halved at the cost of roughly 2–5 times more repetitions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.110504</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Circuits ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Estimation ; quantum algorithms ; quantum simulation ; quantum tomography ; Shadows</subject><ispartof>Physical review letters, 2021-09, Vol.127 (11), p.1-110504, Article 110504</ispartof><rights>Copyright American Physical Society Sep 10, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-943d15bae25437195e923fb570a3495eee7ac70e35baa19a7839cd24b0e67d813</citedby><cites>FETCH-LOGICAL-c444t-943d15bae25437195e923fb570a3495eee7ac70e35baa19a7839cd24b0e67d813</cites><orcidid>0000-0002-0299-0277 ; 0000000202990277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1963683$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Andrew</creatorcontrib><creatorcontrib>Rubin, Nicholas C.</creatorcontrib><creatorcontrib>Miyake, Akimasa</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><title>Fermionic Partial Tomography via Classical Shadows</title><title>Physical review letters</title><description>We propose a tomographic protocol for estimating any k-body reduced density matrix (k-RDM) of an n-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum-state properties, to the fermionic setting. Our sampling protocol uses randomized measurement settings generated by a discrete group of fermionic Gaussian unitaries, implementable with linear-depth circuits. We prove that estimating all k -RDM elements to additive precision ϵ requires on the order of (nk)k3/2 log (n)/ϵ2 repeated state preparations, which is optimal up to the logarithmic factor. Furthermore, numerical calculations show that our protocol offers a substantial improvement in constant overheads for k ≥ 2 , as compared to prior deterministic strategies. We also adapt our method to particle-number symmetry, wherein the additional circuit depth may be halved at the cost of roughly 2–5 times more repetitions.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Estimation</subject><subject>quantum algorithms</subject><subject>quantum simulation</subject><subject>quantum tomography</subject><subject>Shadows</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgCtbqX5BFL162JpuvzVGKVaFg0XoOaXbqpmw3NUkr_ffush7E0zAzDwPzInRN8IQQTO8X9TG-wWEOKU1IIfshx-wEjQiWKpeEsFM0wpiSXGEsz9FFjBuMMSlEOULFDMLW-dbZbGFCcqbJln7rP4PZ1cfs4Ew2bUyMznaL99pU_jteorO1aSJc_dYx-pg9LqfP-fz16WX6MM8tYyzlitGK8JWBgjMqieKgCrpecYkNZV0HII2VGGhnDFFGllTZqmArDEJWJaFjdDPc9TE5Ha1LYGvr2xZs0kQJKkraobsB7YL_2kNMeuuihaYxLfh91AWXQnApeU9v_9GN34e2e6FXnNNSCNkpMSgbfIwB1noX3NaEoyZY93nrP3nrLm895E1_ACXwdGw</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Zhao, Andrew</creator><creator>Rubin, Nicholas C.</creator><creator>Miyake, Akimasa</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0299-0277</orcidid><orcidid>https://orcid.org/0000000202990277</orcidid></search><sort><creationdate>20210910</creationdate><title>Fermionic Partial Tomography via Classical Shadows</title><author>Zhao, Andrew ; Rubin, Nicholas C. ; Miyake, Akimasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-943d15bae25437195e923fb570a3495eee7ac70e35baa19a7839cd24b0e67d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Estimation</topic><topic>quantum algorithms</topic><topic>quantum simulation</topic><topic>quantum tomography</topic><topic>Shadows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Andrew</creatorcontrib><creatorcontrib>Rubin, Nicholas C.</creatorcontrib><creatorcontrib>Miyake, Akimasa</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Andrew</au><au>Rubin, Nicholas C.</au><au>Miyake, Akimasa</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Univ. of New Mexico, Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermionic Partial Tomography via Classical Shadows</atitle><jtitle>Physical review letters</jtitle><date>2021-09-10</date><risdate>2021</risdate><volume>127</volume><issue>11</issue><spage>1</spage><epage>110504</epage><pages>1-110504</pages><artnum>110504</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We propose a tomographic protocol for estimating any k-body reduced density matrix (k-RDM) of an n-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum-state properties, to the fermionic setting. Our sampling protocol uses randomized measurement settings generated by a discrete group of fermionic Gaussian unitaries, implementable with linear-depth circuits. We prove that estimating all k -RDM elements to additive precision ϵ requires on the order of (nk)k3/2 log (n)/ϵ2 repeated state preparations, which is optimal up to the logarithmic factor. Furthermore, numerical calculations show that our protocol offers a substantial improvement in constant overheads for k ≥ 2 , as compared to prior deterministic strategies. We also adapt our method to particle-number symmetry, wherein the additional circuit depth may be halved at the cost of roughly 2–5 times more repetitions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.110504</doi><orcidid>https://orcid.org/0000-0002-0299-0277</orcidid><orcidid>https://orcid.org/0000000202990277</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-09, Vol.127 (11), p.1-110504, Article 110504 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1963683 |
source | American Physical Society Journals; EZB Electronic Journals Library |
subjects | Algorithms Circuits CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Estimation quantum algorithms quantum simulation quantum tomography Shadows |
title | Fermionic Partial Tomography via Classical Shadows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermionic%20Partial%20Tomography%20via%20Classical%20Shadows&rft.jtitle=Physical%20review%20letters&rft.au=Zhao,%20Andrew&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-09-10&rft.volume=127&rft.issue=11&rft.spage=1&rft.epage=110504&rft.pages=1-110504&rft.artnum=110504&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.110504&rft_dat=%3Cproquest_osti_%3E2576657753%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575538667&rft_id=info:pmid/&rfr_iscdi=true |