A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters

Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-12, Vol.402 (C), p.115175, Article 115175
Hauptverfasser: Wang, Zhiheng, Ghanem, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 115175
container_title Computer methods in applied mechanics and engineering
container_volume 402
creator Wang, Zhiheng
Ghanem, Roger
description Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncertainty in model response. In this article, we present two importance measures to evaluate the impact of distribution parameters on the probability distribution function (PDF) of the output and the failure probability. The epistemic uncertainty associated with the distribution parameters is modeled as random variables. A modified extended polynomial chaos expansion (MEPCE) approach is introduced in which aleatory and epistemic random variables are modeled and propagated simultaneously while allowing the separate assessment for any single epistemic variable. A MEPCE-based kernel density estimation (KDE) construction provides a composite map from each epistemic variable to the response PDF. The functional global sensitivity index of the PDF with respect to the distribution parameters is thus derived, as a function of output, which is both more informative and more efficient than standard scalar sensitivity measures. Reliability sensitivity indices can be readily evaluated by integrating the global sensitivity index function over the failure zone. Three illustrative examples are used to demonstrate the proposed methodology.
doi_str_mv 10.1016/j.cma.2022.115175
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1962890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522003383</els_id><sourcerecordid>2774243954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-7b67c547b4f3021015dd716b424e988fa033dd4ca625d142bebf95f1f79b3b73</originalsourceid><addsrcrecordid>eNp9kUFv1DAUhC0EEkvhB_RmwTmL7cRxIk5VBRSpEpfeLdt5bt8qGy9-3qI98N9xFA6c6su7fDOe0TB2LcVeCtl_PuzD0e2VUGovpZZGv2I7OZixUbIdXrOdEJ1uzKD0W_aO6CDqG6TasT83PJ6XUDAtbuaPc_L1ECyEBZ-xXPgRHJ0zcLdMHGLEgLAUnmFG53Feif9pV10uhMR_Y3mqFJ0gFF4Sp-IKUsFQ7U8uuyMUyPSevYluJvjw716xh29fH27vmvuf33_c3tw3oR11aYzvTdCd8V1shap99TQZ2ftOdTAOQ3SibaepC65XepKd8uDjqKOMZvStN-0V-7jZpprAUsAC4SmkZanhrBx7NYyiQp826JTTrzNQsYd0zrUPWWVM_apG6SolNyrkRJQh2lPGo8sXK4Vdl7AHW5ew6xJ2W6JqvmwaqBWfEfIaAZYAE-Y1wZTwBfVfDiKTaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774243954</pqid></control><display><type>article</type><title>A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Zhiheng ; Ghanem, Roger</creator><creatorcontrib>Wang, Zhiheng ; Ghanem, Roger</creatorcontrib><description>Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncertainty in model response. In this article, we present two importance measures to evaluate the impact of distribution parameters on the probability distribution function (PDF) of the output and the failure probability. The epistemic uncertainty associated with the distribution parameters is modeled as random variables. A modified extended polynomial chaos expansion (MEPCE) approach is introduced in which aleatory and epistemic random variables are modeled and propagated simultaneously while allowing the separate assessment for any single epistemic variable. A MEPCE-based kernel density estimation (KDE) construction provides a composite map from each epistemic variable to the response PDF. The functional global sensitivity index of the PDF with respect to the distribution parameters is thus derived, as a function of output, which is both more informative and more efficient than standard scalar sensitivity measures. Reliability sensitivity indices can be readily evaluated by integrating the global sensitivity index function over the failure zone. Three illustrative examples are used to demonstrate the proposed methodology.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.115175</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Distribution functions ; Distribution parameters ; Epistemology ; Evaluation ; Global sensitivity analysis ; Kernel density estimation ; Modified extended polynomial chaos expansion ; Parameter modification ; Parameter sensitivity ; Polynomials ; Probabilistic models ; Probability distribution functions ; Random variables ; Reliability analysis ; Reliability aspects ; Reliability sensitivity index ; Sensitivity analysis ; Sensitivity index function ; Statistical analysis ; Uncertainty</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-12, Vol.402 (C), p.115175, Article 115175</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-7b67c547b4f3021015dd716b424e988fa033dd4ca625d142bebf95f1f79b3b73</citedby><cites>FETCH-LOGICAL-c395t-7b67c547b4f3021015dd716b424e988fa033dd4ca625d142bebf95f1f79b3b73</cites><orcidid>0000-0001-7246-3643 ; 0000-0002-1890-920X ; 0000000172463643 ; 000000021890920X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782522003383$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1962890$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhiheng</creatorcontrib><creatorcontrib>Ghanem, Roger</creatorcontrib><title>A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters</title><title>Computer methods in applied mechanics and engineering</title><description>Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncertainty in model response. In this article, we present two importance measures to evaluate the impact of distribution parameters on the probability distribution function (PDF) of the output and the failure probability. The epistemic uncertainty associated with the distribution parameters is modeled as random variables. A modified extended polynomial chaos expansion (MEPCE) approach is introduced in which aleatory and epistemic random variables are modeled and propagated simultaneously while allowing the separate assessment for any single epistemic variable. A MEPCE-based kernel density estimation (KDE) construction provides a composite map from each epistemic variable to the response PDF. The functional global sensitivity index of the PDF with respect to the distribution parameters is thus derived, as a function of output, which is both more informative and more efficient than standard scalar sensitivity measures. Reliability sensitivity indices can be readily evaluated by integrating the global sensitivity index function over the failure zone. Three illustrative examples are used to demonstrate the proposed methodology.</description><subject>Distribution functions</subject><subject>Distribution parameters</subject><subject>Epistemology</subject><subject>Evaluation</subject><subject>Global sensitivity analysis</subject><subject>Kernel density estimation</subject><subject>Modified extended polynomial chaos expansion</subject><subject>Parameter modification</subject><subject>Parameter sensitivity</subject><subject>Polynomials</subject><subject>Probabilistic models</subject><subject>Probability distribution functions</subject><subject>Random variables</subject><subject>Reliability analysis</subject><subject>Reliability aspects</subject><subject>Reliability sensitivity index</subject><subject>Sensitivity analysis</subject><subject>Sensitivity index function</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAUhC0EEkvhB_RmwTmL7cRxIk5VBRSpEpfeLdt5bt8qGy9-3qI98N9xFA6c6su7fDOe0TB2LcVeCtl_PuzD0e2VUGovpZZGv2I7OZixUbIdXrOdEJ1uzKD0W_aO6CDqG6TasT83PJ6XUDAtbuaPc_L1ECyEBZ-xXPgRHJ0zcLdMHGLEgLAUnmFG53Feif9pV10uhMR_Y3mqFJ0gFF4Sp-IKUsFQ7U8uuyMUyPSevYluJvjw716xh29fH27vmvuf33_c3tw3oR11aYzvTdCd8V1shap99TQZ2ftOdTAOQ3SibaepC65XepKd8uDjqKOMZvStN-0V-7jZpprAUsAC4SmkZanhrBx7NYyiQp826JTTrzNQsYd0zrUPWWVM_apG6SolNyrkRJQh2lPGo8sXK4Vdl7AHW5ew6xJ2W6JqvmwaqBWfEfIaAZYAE-Y1wZTwBfVfDiKTaA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wang, Zhiheng</creator><creator>Ghanem, Roger</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7246-3643</orcidid><orcidid>https://orcid.org/0000-0002-1890-920X</orcidid><orcidid>https://orcid.org/0000000172463643</orcidid><orcidid>https://orcid.org/000000021890920X</orcidid></search><sort><creationdate>20221201</creationdate><title>A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters</title><author>Wang, Zhiheng ; Ghanem, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-7b67c547b4f3021015dd716b424e988fa033dd4ca625d142bebf95f1f79b3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distribution functions</topic><topic>Distribution parameters</topic><topic>Epistemology</topic><topic>Evaluation</topic><topic>Global sensitivity analysis</topic><topic>Kernel density estimation</topic><topic>Modified extended polynomial chaos expansion</topic><topic>Parameter modification</topic><topic>Parameter sensitivity</topic><topic>Polynomials</topic><topic>Probabilistic models</topic><topic>Probability distribution functions</topic><topic>Random variables</topic><topic>Reliability analysis</topic><topic>Reliability aspects</topic><topic>Reliability sensitivity index</topic><topic>Sensitivity analysis</topic><topic>Sensitivity index function</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiheng</creatorcontrib><creatorcontrib>Ghanem, Roger</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiheng</au><au>Ghanem, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>402</volume><issue>C</issue><spage>115175</spage><pages>115175-</pages><artnum>115175</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncertainty in model response. In this article, we present two importance measures to evaluate the impact of distribution parameters on the probability distribution function (PDF) of the output and the failure probability. The epistemic uncertainty associated with the distribution parameters is modeled as random variables. A modified extended polynomial chaos expansion (MEPCE) approach is introduced in which aleatory and epistemic random variables are modeled and propagated simultaneously while allowing the separate assessment for any single epistemic variable. A MEPCE-based kernel density estimation (KDE) construction provides a composite map from each epistemic variable to the response PDF. The functional global sensitivity index of the PDF with respect to the distribution parameters is thus derived, as a function of output, which is both more informative and more efficient than standard scalar sensitivity measures. Reliability sensitivity indices can be readily evaluated by integrating the global sensitivity index function over the failure zone. Three illustrative examples are used to demonstrate the proposed methodology.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.115175</doi><orcidid>https://orcid.org/0000-0001-7246-3643</orcidid><orcidid>https://orcid.org/0000-0002-1890-920X</orcidid><orcidid>https://orcid.org/0000000172463643</orcidid><orcidid>https://orcid.org/000000021890920X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-12, Vol.402 (C), p.115175, Article 115175
issn 0045-7825
1879-2138
language eng
recordid cdi_osti_scitechconnect_1962890
source Elsevier ScienceDirect Journals
subjects Distribution functions
Distribution parameters
Epistemology
Evaluation
Global sensitivity analysis
Kernel density estimation
Modified extended polynomial chaos expansion
Parameter modification
Parameter sensitivity
Polynomials
Probabilistic models
Probability distribution functions
Random variables
Reliability analysis
Reliability aspects
Reliability sensitivity index
Sensitivity analysis
Sensitivity index function
Statistical analysis
Uncertainty
title A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20functional%20global%20sensitivity%20measure%20and%20efficient%20reliability%20sensitivity%20analysis%20with%20respect%20to%20statistical%20parameters&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Wang,%20Zhiheng&rft.date=2022-12-01&rft.volume=402&rft.issue=C&rft.spage=115175&rft.pages=115175-&rft.artnum=115175&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.115175&rft_dat=%3Cproquest_osti_%3E2774243954%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774243954&rft_id=info:pmid/&rft_els_id=S0045782522003383&rfr_iscdi=true