A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters
Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncert...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2022-12, Vol.402 (C), p.115175, Article 115175 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 115175 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 402 |
creator | Wang, Zhiheng Ghanem, Roger |
description | Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncertainty in model response. In this article, we present two importance measures to evaluate the impact of distribution parameters on the probability distribution function (PDF) of the output and the failure probability. The epistemic uncertainty associated with the distribution parameters is modeled as random variables. A modified extended polynomial chaos expansion (MEPCE) approach is introduced in which aleatory and epistemic random variables are modeled and propagated simultaneously while allowing the separate assessment for any single epistemic variable. A MEPCE-based kernel density estimation (KDE) construction provides a composite map from each epistemic variable to the response PDF. The functional global sensitivity index of the PDF with respect to the distribution parameters is thus derived, as a function of output, which is both more informative and more efficient than standard scalar sensitivity measures. Reliability sensitivity indices can be readily evaluated by integrating the global sensitivity index function over the failure zone. Three illustrative examples are used to demonstrate the proposed methodology. |
doi_str_mv | 10.1016/j.cma.2022.115175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1962890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522003383</els_id><sourcerecordid>2774243954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-7b67c547b4f3021015dd716b424e988fa033dd4ca625d142bebf95f1f79b3b73</originalsourceid><addsrcrecordid>eNp9kUFv1DAUhC0EEkvhB_RmwTmL7cRxIk5VBRSpEpfeLdt5bt8qGy9-3qI98N9xFA6c6su7fDOe0TB2LcVeCtl_PuzD0e2VUGovpZZGv2I7OZixUbIdXrOdEJ1uzKD0W_aO6CDqG6TasT83PJ6XUDAtbuaPc_L1ECyEBZ-xXPgRHJ0zcLdMHGLEgLAUnmFG53Feif9pV10uhMR_Y3mqFJ0gFF4Sp-IKUsFQ7U8uuyMUyPSevYluJvjw716xh29fH27vmvuf33_c3tw3oR11aYzvTdCd8V1shap99TQZ2ftOdTAOQ3SibaepC65XepKd8uDjqKOMZvStN-0V-7jZpprAUsAC4SmkZanhrBx7NYyiQp826JTTrzNQsYd0zrUPWWVM_apG6SolNyrkRJQh2lPGo8sXK4Vdl7AHW5ew6xJ2W6JqvmwaqBWfEfIaAZYAE-Y1wZTwBfVfDiKTaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774243954</pqid></control><display><type>article</type><title>A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Zhiheng ; Ghanem, Roger</creator><creatorcontrib>Wang, Zhiheng ; Ghanem, Roger</creatorcontrib><description>Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncertainty in model response. In this article, we present two importance measures to evaluate the impact of distribution parameters on the probability distribution function (PDF) of the output and the failure probability. The epistemic uncertainty associated with the distribution parameters is modeled as random variables. A modified extended polynomial chaos expansion (MEPCE) approach is introduced in which aleatory and epistemic random variables are modeled and propagated simultaneously while allowing the separate assessment for any single epistemic variable. A MEPCE-based kernel density estimation (KDE) construction provides a composite map from each epistemic variable to the response PDF. The functional global sensitivity index of the PDF with respect to the distribution parameters is thus derived, as a function of output, which is both more informative and more efficient than standard scalar sensitivity measures. Reliability sensitivity indices can be readily evaluated by integrating the global sensitivity index function over the failure zone. Three illustrative examples are used to demonstrate the proposed methodology.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.115175</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Distribution functions ; Distribution parameters ; Epistemology ; Evaluation ; Global sensitivity analysis ; Kernel density estimation ; Modified extended polynomial chaos expansion ; Parameter modification ; Parameter sensitivity ; Polynomials ; Probabilistic models ; Probability distribution functions ; Random variables ; Reliability analysis ; Reliability aspects ; Reliability sensitivity index ; Sensitivity analysis ; Sensitivity index function ; Statistical analysis ; Uncertainty</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-12, Vol.402 (C), p.115175, Article 115175</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-7b67c547b4f3021015dd716b424e988fa033dd4ca625d142bebf95f1f79b3b73</citedby><cites>FETCH-LOGICAL-c395t-7b67c547b4f3021015dd716b424e988fa033dd4ca625d142bebf95f1f79b3b73</cites><orcidid>0000-0001-7246-3643 ; 0000-0002-1890-920X ; 0000000172463643 ; 000000021890920X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782522003383$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1962890$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhiheng</creatorcontrib><creatorcontrib>Ghanem, Roger</creatorcontrib><title>A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters</title><title>Computer methods in applied mechanics and engineering</title><description>Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncertainty in model response. In this article, we present two importance measures to evaluate the impact of distribution parameters on the probability distribution function (PDF) of the output and the failure probability. The epistemic uncertainty associated with the distribution parameters is modeled as random variables. A modified extended polynomial chaos expansion (MEPCE) approach is introduced in which aleatory and epistemic random variables are modeled and propagated simultaneously while allowing the separate assessment for any single epistemic variable. A MEPCE-based kernel density estimation (KDE) construction provides a composite map from each epistemic variable to the response PDF. The functional global sensitivity index of the PDF with respect to the distribution parameters is thus derived, as a function of output, which is both more informative and more efficient than standard scalar sensitivity measures. Reliability sensitivity indices can be readily evaluated by integrating the global sensitivity index function over the failure zone. Three illustrative examples are used to demonstrate the proposed methodology.</description><subject>Distribution functions</subject><subject>Distribution parameters</subject><subject>Epistemology</subject><subject>Evaluation</subject><subject>Global sensitivity analysis</subject><subject>Kernel density estimation</subject><subject>Modified extended polynomial chaos expansion</subject><subject>Parameter modification</subject><subject>Parameter sensitivity</subject><subject>Polynomials</subject><subject>Probabilistic models</subject><subject>Probability distribution functions</subject><subject>Random variables</subject><subject>Reliability analysis</subject><subject>Reliability aspects</subject><subject>Reliability sensitivity index</subject><subject>Sensitivity analysis</subject><subject>Sensitivity index function</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAUhC0EEkvhB_RmwTmL7cRxIk5VBRSpEpfeLdt5bt8qGy9-3qI98N9xFA6c6su7fDOe0TB2LcVeCtl_PuzD0e2VUGovpZZGv2I7OZixUbIdXrOdEJ1uzKD0W_aO6CDqG6TasT83PJ6XUDAtbuaPc_L1ECyEBZ-xXPgRHJ0zcLdMHGLEgLAUnmFG53Feif9pV10uhMR_Y3mqFJ0gFF4Sp-IKUsFQ7U8uuyMUyPSevYluJvjw716xh29fH27vmvuf33_c3tw3oR11aYzvTdCd8V1shap99TQZ2ftOdTAOQ3SibaepC65XepKd8uDjqKOMZvStN-0V-7jZpprAUsAC4SmkZanhrBx7NYyiQp826JTTrzNQsYd0zrUPWWVM_apG6SolNyrkRJQh2lPGo8sXK4Vdl7AHW5ew6xJ2W6JqvmwaqBWfEfIaAZYAE-Y1wZTwBfVfDiKTaA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wang, Zhiheng</creator><creator>Ghanem, Roger</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7246-3643</orcidid><orcidid>https://orcid.org/0000-0002-1890-920X</orcidid><orcidid>https://orcid.org/0000000172463643</orcidid><orcidid>https://orcid.org/000000021890920X</orcidid></search><sort><creationdate>20221201</creationdate><title>A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters</title><author>Wang, Zhiheng ; Ghanem, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-7b67c547b4f3021015dd716b424e988fa033dd4ca625d142bebf95f1f79b3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distribution functions</topic><topic>Distribution parameters</topic><topic>Epistemology</topic><topic>Evaluation</topic><topic>Global sensitivity analysis</topic><topic>Kernel density estimation</topic><topic>Modified extended polynomial chaos expansion</topic><topic>Parameter modification</topic><topic>Parameter sensitivity</topic><topic>Polynomials</topic><topic>Probabilistic models</topic><topic>Probability distribution functions</topic><topic>Random variables</topic><topic>Reliability analysis</topic><topic>Reliability aspects</topic><topic>Reliability sensitivity index</topic><topic>Sensitivity analysis</topic><topic>Sensitivity index function</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiheng</creatorcontrib><creatorcontrib>Ghanem, Roger</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiheng</au><au>Ghanem, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>402</volume><issue>C</issue><spage>115175</spage><pages>115175-</pages><artnum>115175</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Sensitivity analysis and reliability assessment are two important aspects of structural and system safety. Epistemic uncertainty with respect to probabilistic model of input parameters due to lack of knowledge is present in many scarce-data applications and complicates the characterization of uncertainty in model response. In this article, we present two importance measures to evaluate the impact of distribution parameters on the probability distribution function (PDF) of the output and the failure probability. The epistemic uncertainty associated with the distribution parameters is modeled as random variables. A modified extended polynomial chaos expansion (MEPCE) approach is introduced in which aleatory and epistemic random variables are modeled and propagated simultaneously while allowing the separate assessment for any single epistemic variable. A MEPCE-based kernel density estimation (KDE) construction provides a composite map from each epistemic variable to the response PDF. The functional global sensitivity index of the PDF with respect to the distribution parameters is thus derived, as a function of output, which is both more informative and more efficient than standard scalar sensitivity measures. Reliability sensitivity indices can be readily evaluated by integrating the global sensitivity index function over the failure zone. Three illustrative examples are used to demonstrate the proposed methodology.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.115175</doi><orcidid>https://orcid.org/0000-0001-7246-3643</orcidid><orcidid>https://orcid.org/0000-0002-1890-920X</orcidid><orcidid>https://orcid.org/0000000172463643</orcidid><orcidid>https://orcid.org/000000021890920X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2022-12, Vol.402 (C), p.115175, Article 115175 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_osti_scitechconnect_1962890 |
source | Elsevier ScienceDirect Journals |
subjects | Distribution functions Distribution parameters Epistemology Evaluation Global sensitivity analysis Kernel density estimation Modified extended polynomial chaos expansion Parameter modification Parameter sensitivity Polynomials Probabilistic models Probability distribution functions Random variables Reliability analysis Reliability aspects Reliability sensitivity index Sensitivity analysis Sensitivity index function Statistical analysis Uncertainty |
title | A functional global sensitivity measure and efficient reliability sensitivity analysis with respect to statistical parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20functional%20global%20sensitivity%20measure%20and%20efficient%20reliability%20sensitivity%20analysis%20with%20respect%20to%20statistical%20parameters&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Wang,%20Zhiheng&rft.date=2022-12-01&rft.volume=402&rft.issue=C&rft.spage=115175&rft.pages=115175-&rft.artnum=115175&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.115175&rft_dat=%3Cproquest_osti_%3E2774243954%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774243954&rft_id=info:pmid/&rft_els_id=S0045782522003383&rfr_iscdi=true |