Small stress-hysteresis in a nanocrystalline TiNiCuFe alloy for elastocaloric applications over wide temperature window

Shape memory alloys (SMAs) with small stress-hysteresis and wide superelasticity temperature window are highly desired for elastocaloric applications. In this study, a nanocrystalline Ti50Ni42Cu6Fe2 SMA is fabricated by casting, forging, wire-drawing and annealing. The alloy exhibits superelasticity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-12, Vol.928 (C), p.167195, Article 167195
Hauptverfasser: Zhang, Hui, Liu, Jinyi, Ma, Zhiyuan, Ren, Yang, Jiang, Daqiang, Cui, Lishan, Yu, Kaiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 167195
container_title Journal of alloys and compounds
container_volume 928
creator Zhang, Hui
Liu, Jinyi
Ma, Zhiyuan
Ren, Yang
Jiang, Daqiang
Cui, Lishan
Yu, Kaiyuan
description Shape memory alloys (SMAs) with small stress-hysteresis and wide superelasticity temperature window are highly desired for elastocaloric applications. In this study, a nanocrystalline Ti50Ni42Cu6Fe2 SMA is fabricated by casting, forging, wire-drawing and annealing. The alloy exhibits superelasticity with a narrow average stress-hysteresis of ∼180 MPa over a temperature window from 213 K to 323 K. The temperature change of the elastocaloric effect is calculated to be ∼28 K. In situ synchrotron X-ray diffraction measurements suggest that the small hysteresis is probably attributed to the enhanced lattice compatibility as quantified by the cofactor condition parameters (λ2, XI and XII). •Nanograined Ti50Ni42Cu6Fe2 SMA was fabricated by wire-drawing.•Alloy shows superelasticity from 213 K to 323 K, with 180 MPa stress-hysteresis.•Superior lattice compatibility was found by in situ synchrotron XRD.
doi_str_mv 10.1016/j.jallcom.2022.167195
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1962163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822035861</els_id><sourcerecordid>2732559429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-eb5a23691aaf1f45f06e6d52d5f7668832686d24a7a7817187ff43d405de025f3</originalsourceid><addsrcrecordid>eNqFkUtr3DAUhUVoINMkP6Eg2rVdPSzZXpUyNG1gaBedrIUqXREZj-RKmgzz76PB2Wd1H3znci4HoU-UtJRQ-XVqJz3PJh5aRhhrqezpKK7Qhg49bzopxw9oQ0YmmoEPww36mPNECKEjpxt0-nuoWpxLgpyb53MuUDufsQ9Y46BDNKkuK-MD4L3_7bfHB8B1jmfsYsIw61yi0XNM3mC9LLM3uvgYMo4vkPDJW8AFDgskXY4J6iLYeLpD107PGe7f6i16evix3_5qdn9-Pm6_7xrTUVoa-Cc043KkWjvqOuGIBGkFs8L1Ug4DZ3KQlnW61_1A-_qxcx23HREWCBOO36LP692Yi1fZ-ALm2cQQwBRFR8mo5BX6skJLiv-PkIua4jGF6kuxnjMhxo6NlRIrZVLMOYFTS_IHnc6KEnUJQk3qLQh1CUKtQVTdt1UH9c8XD-liA4IB69PFhY3-nQuvvzuVsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732559429</pqid></control><display><type>article</type><title>Small stress-hysteresis in a nanocrystalline TiNiCuFe alloy for elastocaloric applications over wide temperature window</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Hui ; Liu, Jinyi ; Ma, Zhiyuan ; Ren, Yang ; Jiang, Daqiang ; Cui, Lishan ; Yu, Kaiyuan</creator><creatorcontrib>Zhang, Hui ; Liu, Jinyi ; Ma, Zhiyuan ; Ren, Yang ; Jiang, Daqiang ; Cui, Lishan ; Yu, Kaiyuan</creatorcontrib><description>Shape memory alloys (SMAs) with small stress-hysteresis and wide superelasticity temperature window are highly desired for elastocaloric applications. In this study, a nanocrystalline Ti50Ni42Cu6Fe2 SMA is fabricated by casting, forging, wire-drawing and annealing. The alloy exhibits superelasticity with a narrow average stress-hysteresis of ∼180 MPa over a temperature window from 213 K to 323 K. The temperature change of the elastocaloric effect is calculated to be ∼28 K. In situ synchrotron X-ray diffraction measurements suggest that the small hysteresis is probably attributed to the enhanced lattice compatibility as quantified by the cofactor condition parameters (λ2, XI and XII). •Nanograined Ti50Ni42Cu6Fe2 SMA was fabricated by wire-drawing.•Alloy shows superelasticity from 213 K to 323 K, with 180 MPa stress-hysteresis.•Superior lattice compatibility was found by in situ synchrotron XRD.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.167195</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Elastocaloric ; Forging ; Hysteresis ; Lattice compatibility ; Nanocrystals ; Shape memory alloys ; Stress-hysteresis ; Superelasticity ; Synchrotron radiation ; Synchrotrons ; Wire drawing</subject><ispartof>Journal of alloys and compounds, 2022-12, Vol.928 (C), p.167195, Article 167195</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 20, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-eb5a23691aaf1f45f06e6d52d5f7668832686d24a7a7817187ff43d405de025f3</citedby><cites>FETCH-LOGICAL-c411t-eb5a23691aaf1f45f06e6d52d5f7668832686d24a7a7817187ff43d405de025f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2022.167195$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1962163$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Liu, Jinyi</creatorcontrib><creatorcontrib>Ma, Zhiyuan</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Jiang, Daqiang</creatorcontrib><creatorcontrib>Cui, Lishan</creatorcontrib><creatorcontrib>Yu, Kaiyuan</creatorcontrib><title>Small stress-hysteresis in a nanocrystalline TiNiCuFe alloy for elastocaloric applications over wide temperature window</title><title>Journal of alloys and compounds</title><description>Shape memory alloys (SMAs) with small stress-hysteresis and wide superelasticity temperature window are highly desired for elastocaloric applications. In this study, a nanocrystalline Ti50Ni42Cu6Fe2 SMA is fabricated by casting, forging, wire-drawing and annealing. The alloy exhibits superelasticity with a narrow average stress-hysteresis of ∼180 MPa over a temperature window from 213 K to 323 K. The temperature change of the elastocaloric effect is calculated to be ∼28 K. In situ synchrotron X-ray diffraction measurements suggest that the small hysteresis is probably attributed to the enhanced lattice compatibility as quantified by the cofactor condition parameters (λ2, XI and XII). •Nanograined Ti50Ni42Cu6Fe2 SMA was fabricated by wire-drawing.•Alloy shows superelasticity from 213 K to 323 K, with 180 MPa stress-hysteresis.•Superior lattice compatibility was found by in situ synchrotron XRD.</description><subject>Elastocaloric</subject><subject>Forging</subject><subject>Hysteresis</subject><subject>Lattice compatibility</subject><subject>Nanocrystals</subject><subject>Shape memory alloys</subject><subject>Stress-hysteresis</subject><subject>Superelasticity</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Wire drawing</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr3DAUhUVoINMkP6Eg2rVdPSzZXpUyNG1gaBedrIUqXREZj-RKmgzz76PB2Wd1H3znci4HoU-UtJRQ-XVqJz3PJh5aRhhrqezpKK7Qhg49bzopxw9oQ0YmmoEPww36mPNECKEjpxt0-nuoWpxLgpyb53MuUDufsQ9Y46BDNKkuK-MD4L3_7bfHB8B1jmfsYsIw61yi0XNM3mC9LLM3uvgYMo4vkPDJW8AFDgskXY4J6iLYeLpD107PGe7f6i16evix3_5qdn9-Pm6_7xrTUVoa-Cc043KkWjvqOuGIBGkFs8L1Ug4DZ3KQlnW61_1A-_qxcx23HREWCBOO36LP692Yi1fZ-ALm2cQQwBRFR8mo5BX6skJLiv-PkIua4jGF6kuxnjMhxo6NlRIrZVLMOYFTS_IHnc6KEnUJQk3qLQh1CUKtQVTdt1UH9c8XD-liA4IB69PFhY3-nQuvvzuVsQ</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Zhang, Hui</creator><creator>Liu, Jinyi</creator><creator>Ma, Zhiyuan</creator><creator>Ren, Yang</creator><creator>Jiang, Daqiang</creator><creator>Cui, Lishan</creator><creator>Yu, Kaiyuan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20221220</creationdate><title>Small stress-hysteresis in a nanocrystalline TiNiCuFe alloy for elastocaloric applications over wide temperature window</title><author>Zhang, Hui ; Liu, Jinyi ; Ma, Zhiyuan ; Ren, Yang ; Jiang, Daqiang ; Cui, Lishan ; Yu, Kaiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-eb5a23691aaf1f45f06e6d52d5f7668832686d24a7a7817187ff43d405de025f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Elastocaloric</topic><topic>Forging</topic><topic>Hysteresis</topic><topic>Lattice compatibility</topic><topic>Nanocrystals</topic><topic>Shape memory alloys</topic><topic>Stress-hysteresis</topic><topic>Superelasticity</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Wire drawing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Liu, Jinyi</creatorcontrib><creatorcontrib>Ma, Zhiyuan</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Jiang, Daqiang</creatorcontrib><creatorcontrib>Cui, Lishan</creatorcontrib><creatorcontrib>Yu, Kaiyuan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Liu, Jinyi</au><au>Ma, Zhiyuan</au><au>Ren, Yang</au><au>Jiang, Daqiang</au><au>Cui, Lishan</au><au>Yu, Kaiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small stress-hysteresis in a nanocrystalline TiNiCuFe alloy for elastocaloric applications over wide temperature window</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-12-20</date><risdate>2022</risdate><volume>928</volume><issue>C</issue><spage>167195</spage><pages>167195-</pages><artnum>167195</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Shape memory alloys (SMAs) with small stress-hysteresis and wide superelasticity temperature window are highly desired for elastocaloric applications. In this study, a nanocrystalline Ti50Ni42Cu6Fe2 SMA is fabricated by casting, forging, wire-drawing and annealing. The alloy exhibits superelasticity with a narrow average stress-hysteresis of ∼180 MPa over a temperature window from 213 K to 323 K. The temperature change of the elastocaloric effect is calculated to be ∼28 K. In situ synchrotron X-ray diffraction measurements suggest that the small hysteresis is probably attributed to the enhanced lattice compatibility as quantified by the cofactor condition parameters (λ2, XI and XII). •Nanograined Ti50Ni42Cu6Fe2 SMA was fabricated by wire-drawing.•Alloy shows superelasticity from 213 K to 323 K, with 180 MPa stress-hysteresis.•Superior lattice compatibility was found by in situ synchrotron XRD.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.167195</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-12, Vol.928 (C), p.167195, Article 167195
issn 0925-8388
1873-4669
language eng
recordid cdi_osti_scitechconnect_1962163
source Access via ScienceDirect (Elsevier)
subjects Elastocaloric
Forging
Hysteresis
Lattice compatibility
Nanocrystals
Shape memory alloys
Stress-hysteresis
Superelasticity
Synchrotron radiation
Synchrotrons
Wire drawing
title Small stress-hysteresis in a nanocrystalline TiNiCuFe alloy for elastocaloric applications over wide temperature window
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20stress-hysteresis%20in%20a%20nanocrystalline%20TiNiCuFe%20alloy%20for%20elastocaloric%20applications%20over%20wide%20temperature%20window&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zhang,%20Hui&rft.date=2022-12-20&rft.volume=928&rft.issue=C&rft.spage=167195&rft.pages=167195-&rft.artnum=167195&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.167195&rft_dat=%3Cproquest_osti_%3E2732559429%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732559429&rft_id=info:pmid/&rft_els_id=S0925838822035861&rfr_iscdi=true