Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching
Abstract Monocrystalline Si ( c ‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO x ) require >1000 °C thermal processing to create conducting pinholes in the SiO x layer. However, this high thermal budget can induce bulk defects...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-01, Vol.13 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Lima Anderson, Caroline Nemeth, William Guthrey, Harvey L. Jiang, Chun‐Sheng Page, Matthew R. Agarwal, Sumit Stradins, Paul |
description | Abstract
Monocrystalline Si (
c
‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO
x
) require >1000 °C thermal processing to create conducting pinholes in the SiO
x
layer. However, this high thermal budget can induce bulk defects in the Czochralski
c
‐Si wafers used as the cell absorber layer. In this work, it is demonstrated that pinholes can instead be created using metal‐assisted chemical etching on planar or textured morphologies, at room temperature. This wet process creates up to 200 nm wide conducting pinholes that are directly observed with transmission electron and atomic force microscopies. High‐performance hole‐selective poly‐Si/SiN
y
/SiO
x
and electron‐selective poly‐Si/SiO
x
passivating contacts are fabricated and implemented in laboratory‐scale solar cells. This process development significantly broadens the range of passivation layer materials, their thicknesses, and surface morphologies, which enables the design of poly‐Si contacts with superior passivating quality. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1961906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961906</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19619063</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMoWLR3-LgXGlOKXUpR3ChC3es3RhOJifg_uvUIntGTWEFcO5sZhjfTEoksZD4sxnnW_mU16oqU6JQ1ykuZKZWI7RJDvLhgozewQiJ3Q3bhCFUMjJqhdlBHj1eojPcEM9xdnUY2e7g7trAwjP71eE6aJX3ayppzA3iYsrbNUV90DujJpF_vicFsuq7mw0jsNqQdG211DMFo3siykGVWqL-gN13QR2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching</title><source>Wiley Online Library All Journals</source><creator>Lima Anderson, Caroline ; Nemeth, William ; Guthrey, Harvey L. ; Jiang, Chun‐Sheng ; Page, Matthew R. ; Agarwal, Sumit ; Stradins, Paul</creator><creatorcontrib>Lima Anderson, Caroline ; Nemeth, William ; Guthrey, Harvey L. ; Jiang, Chun‐Sheng ; Page, Matthew R. ; Agarwal, Sumit ; Stradins, Paul</creatorcontrib><description>Abstract
Monocrystalline Si (
c
‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO
x
) require >1000 °C thermal processing to create conducting pinholes in the SiO
x
layer. However, this high thermal budget can induce bulk defects in the Czochralski
c
‐Si wafers used as the cell absorber layer. In this work, it is demonstrated that pinholes can instead be created using metal‐assisted chemical etching on planar or textured morphologies, at room temperature. This wet process creates up to 200 nm wide conducting pinholes that are directly observed with transmission electron and atomic force microscopies. High‐performance hole‐selective poly‐Si/SiN
y
/SiO
x
and electron‐selective poly‐Si/SiO
x
passivating contacts are fabricated and implemented in laboratory‐scale solar cells. This process development significantly broadens the range of passivation layer materials, their thicknesses, and surface morphologies, which enables the design of poly‐Si contacts with superior passivating quality.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley & Sons)</publisher><ispartof>Advanced energy materials, 2023-01, Vol.13 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000152176815 ; 0000000315373611 ; 0000000315743379 ; 0000000230735564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1961906$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lima Anderson, Caroline</creatorcontrib><creatorcontrib>Nemeth, William</creatorcontrib><creatorcontrib>Guthrey, Harvey L.</creatorcontrib><creatorcontrib>Jiang, Chun‐Sheng</creatorcontrib><creatorcontrib>Page, Matthew R.</creatorcontrib><creatorcontrib>Agarwal, Sumit</creatorcontrib><creatorcontrib>Stradins, Paul</creatorcontrib><title>Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching</title><title>Advanced energy materials</title><description>Abstract
Monocrystalline Si (
c
‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO
x
) require >1000 °C thermal processing to create conducting pinholes in the SiO
x
layer. However, this high thermal budget can induce bulk defects in the Czochralski
c
‐Si wafers used as the cell absorber layer. In this work, it is demonstrated that pinholes can instead be created using metal‐assisted chemical etching on planar or textured morphologies, at room temperature. This wet process creates up to 200 nm wide conducting pinholes that are directly observed with transmission electron and atomic force microscopies. High‐performance hole‐selective poly‐Si/SiN
y
/SiO
x
and electron‐selective poly‐Si/SiO
x
passivating contacts are fabricated and implemented in laboratory‐scale solar cells. This process development significantly broadens the range of passivation layer materials, their thicknesses, and surface morphologies, which enables the design of poly‐Si contacts with superior passivating quality.</description><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjEEKwjAURIMoWLR3-LgXGlOKXUpR3ChC3es3RhOJifg_uvUIntGTWEFcO5sZhjfTEoksZD4sxnnW_mU16oqU6JQ1ykuZKZWI7RJDvLhgozewQiJ3Q3bhCFUMjJqhdlBHj1eojPcEM9xdnUY2e7g7trAwjP71eE6aJX3ayppzA3iYsrbNUV90DujJpF_vicFsuq7mw0jsNqQdG211DMFo3siykGVWqL-gN13QR2s</recordid><startdate>20230129</startdate><enddate>20230129</enddate><creator>Lima Anderson, Caroline</creator><creator>Nemeth, William</creator><creator>Guthrey, Harvey L.</creator><creator>Jiang, Chun‐Sheng</creator><creator>Page, Matthew R.</creator><creator>Agarwal, Sumit</creator><creator>Stradins, Paul</creator><general>Wiley Blackwell (John Wiley & Sons)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000152176815</orcidid><orcidid>https://orcid.org/0000000315373611</orcidid><orcidid>https://orcid.org/0000000315743379</orcidid><orcidid>https://orcid.org/0000000230735564</orcidid></search><sort><creationdate>20230129</creationdate><title>Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching</title><author>Lima Anderson, Caroline ; Nemeth, William ; Guthrey, Harvey L. ; Jiang, Chun‐Sheng ; Page, Matthew R. ; Agarwal, Sumit ; Stradins, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19619063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima Anderson, Caroline</creatorcontrib><creatorcontrib>Nemeth, William</creatorcontrib><creatorcontrib>Guthrey, Harvey L.</creatorcontrib><creatorcontrib>Jiang, Chun‐Sheng</creatorcontrib><creatorcontrib>Page, Matthew R.</creatorcontrib><creatorcontrib>Agarwal, Sumit</creatorcontrib><creatorcontrib>Stradins, Paul</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima Anderson, Caroline</au><au>Nemeth, William</au><au>Guthrey, Harvey L.</au><au>Jiang, Chun‐Sheng</au><au>Page, Matthew R.</au><au>Agarwal, Sumit</au><au>Stradins, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching</atitle><jtitle>Advanced energy materials</jtitle><date>2023-01-29</date><risdate>2023</risdate><volume>13</volume><issue>11</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Abstract
Monocrystalline Si (
c
‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO
x
) require >1000 °C thermal processing to create conducting pinholes in the SiO
x
layer. However, this high thermal budget can induce bulk defects in the Czochralski
c
‐Si wafers used as the cell absorber layer. In this work, it is demonstrated that pinholes can instead be created using metal‐assisted chemical etching on planar or textured morphologies, at room temperature. This wet process creates up to 200 nm wide conducting pinholes that are directly observed with transmission electron and atomic force microscopies. High‐performance hole‐selective poly‐Si/SiN
y
/SiO
x
and electron‐selective poly‐Si/SiO
x
passivating contacts are fabricated and implemented in laboratory‐scale solar cells. This process development significantly broadens the range of passivation layer materials, their thicknesses, and surface morphologies, which enables the design of poly‐Si contacts with superior passivating quality.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley & Sons)</pub><orcidid>https://orcid.org/0000000152176815</orcidid><orcidid>https://orcid.org/0000000315373611</orcidid><orcidid>https://orcid.org/0000000315743379</orcidid><orcidid>https://orcid.org/0000000230735564</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-01, Vol.13 (11) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1961906 |
source | Wiley Online Library All Journals |
title | Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanopinhole%20Passivating%20Contact%20Si%20Solar%20Cells%20Fabricated%20with%20Metal%E2%80%90Assisted%20Chemical%20Etching&rft.jtitle=Advanced%20energy%20materials&rft.au=Lima%20Anderson,%20Caroline&rft.date=2023-01-29&rft.volume=13&rft.issue=11&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/&rft_dat=%3Costi%3E1961906%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |