Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching

Abstract Monocrystalline Si ( c ‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO x ) require >1000 °C thermal processing to create conducting pinholes in the SiO x layer. However, this high thermal budget can induce bulk defects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-01, Vol.13 (11)
Hauptverfasser: Lima Anderson, Caroline, Nemeth, William, Guthrey, Harvey L., Jiang, Chun‐Sheng, Page, Matthew R., Agarwal, Sumit, Stradins, Paul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Advanced energy materials
container_volume 13
creator Lima Anderson, Caroline
Nemeth, William
Guthrey, Harvey L.
Jiang, Chun‐Sheng
Page, Matthew R.
Agarwal, Sumit
Stradins, Paul
description Abstract Monocrystalline Si ( c ‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO x ) require >1000 °C thermal processing to create conducting pinholes in the SiO x layer. However, this high thermal budget can induce bulk defects in the Czochralski c ‐Si wafers used as the cell absorber layer. In this work, it is demonstrated that pinholes can instead be created using metal‐assisted chemical etching on planar or textured morphologies, at room temperature. This wet process creates up to 200 nm wide conducting pinholes that are directly observed with transmission electron and atomic force microscopies. High‐performance hole‐selective poly‐Si/SiN y /SiO x and electron‐selective poly‐Si/SiO x passivating contacts are fabricated and implemented in laboratory‐scale solar cells. This process development significantly broadens the range of passivation layer materials, their thicknesses, and surface morphologies, which enables the design of poly‐Si contacts with superior passivating quality.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1961906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961906</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19619063</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMoWLR3-LgXGlOKXUpR3ChC3es3RhOJifg_uvUIntGTWEFcO5sZhjfTEoksZD4sxnnW_mU16oqU6JQ1ykuZKZWI7RJDvLhgozewQiJ3Q3bhCFUMjJqhdlBHj1eojPcEM9xdnUY2e7g7trAwjP71eE6aJX3ayppzA3iYsrbNUV90DujJpF_vicFsuq7mw0jsNqQdG211DMFo3siykGVWqL-gN13QR2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching</title><source>Wiley Online Library All Journals</source><creator>Lima Anderson, Caroline ; Nemeth, William ; Guthrey, Harvey L. ; Jiang, Chun‐Sheng ; Page, Matthew R. ; Agarwal, Sumit ; Stradins, Paul</creator><creatorcontrib>Lima Anderson, Caroline ; Nemeth, William ; Guthrey, Harvey L. ; Jiang, Chun‐Sheng ; Page, Matthew R. ; Agarwal, Sumit ; Stradins, Paul</creatorcontrib><description>Abstract Monocrystalline Si ( c ‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO x ) require &gt;1000 °C thermal processing to create conducting pinholes in the SiO x layer. However, this high thermal budget can induce bulk defects in the Czochralski c ‐Si wafers used as the cell absorber layer. In this work, it is demonstrated that pinholes can instead be created using metal‐assisted chemical etching on planar or textured morphologies, at room temperature. This wet process creates up to 200 nm wide conducting pinholes that are directly observed with transmission electron and atomic force microscopies. High‐performance hole‐selective poly‐Si/SiN y /SiO x and electron‐selective poly‐Si/SiO x passivating contacts are fabricated and implemented in laboratory‐scale solar cells. This process development significantly broadens the range of passivation layer materials, their thicknesses, and surface morphologies, which enables the design of poly‐Si contacts with superior passivating quality.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley &amp; Sons)</publisher><ispartof>Advanced energy materials, 2023-01, Vol.13 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000152176815 ; 0000000315373611 ; 0000000315743379 ; 0000000230735564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1961906$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lima Anderson, Caroline</creatorcontrib><creatorcontrib>Nemeth, William</creatorcontrib><creatorcontrib>Guthrey, Harvey L.</creatorcontrib><creatorcontrib>Jiang, Chun‐Sheng</creatorcontrib><creatorcontrib>Page, Matthew R.</creatorcontrib><creatorcontrib>Agarwal, Sumit</creatorcontrib><creatorcontrib>Stradins, Paul</creatorcontrib><title>Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching</title><title>Advanced energy materials</title><description>Abstract Monocrystalline Si ( c ‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO x ) require &gt;1000 °C thermal processing to create conducting pinholes in the SiO x layer. However, this high thermal budget can induce bulk defects in the Czochralski c ‐Si wafers used as the cell absorber layer. In this work, it is demonstrated that pinholes can instead be created using metal‐assisted chemical etching on planar or textured morphologies, at room temperature. This wet process creates up to 200 nm wide conducting pinholes that are directly observed with transmission electron and atomic force microscopies. High‐performance hole‐selective poly‐Si/SiN y /SiO x and electron‐selective poly‐Si/SiO x passivating contacts are fabricated and implemented in laboratory‐scale solar cells. This process development significantly broadens the range of passivation layer materials, their thicknesses, and surface morphologies, which enables the design of poly‐Si contacts with superior passivating quality.</description><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjEEKwjAURIMoWLR3-LgXGlOKXUpR3ChC3es3RhOJifg_uvUIntGTWEFcO5sZhjfTEoksZD4sxnnW_mU16oqU6JQ1ykuZKZWI7RJDvLhgozewQiJ3Q3bhCFUMjJqhdlBHj1eojPcEM9xdnUY2e7g7trAwjP71eE6aJX3ayppzA3iYsrbNUV90DujJpF_vicFsuq7mw0jsNqQdG211DMFo3siykGVWqL-gN13QR2s</recordid><startdate>20230129</startdate><enddate>20230129</enddate><creator>Lima Anderson, Caroline</creator><creator>Nemeth, William</creator><creator>Guthrey, Harvey L.</creator><creator>Jiang, Chun‐Sheng</creator><creator>Page, Matthew R.</creator><creator>Agarwal, Sumit</creator><creator>Stradins, Paul</creator><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000152176815</orcidid><orcidid>https://orcid.org/0000000315373611</orcidid><orcidid>https://orcid.org/0000000315743379</orcidid><orcidid>https://orcid.org/0000000230735564</orcidid></search><sort><creationdate>20230129</creationdate><title>Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching</title><author>Lima Anderson, Caroline ; Nemeth, William ; Guthrey, Harvey L. ; Jiang, Chun‐Sheng ; Page, Matthew R. ; Agarwal, Sumit ; Stradins, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19619063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima Anderson, Caroline</creatorcontrib><creatorcontrib>Nemeth, William</creatorcontrib><creatorcontrib>Guthrey, Harvey L.</creatorcontrib><creatorcontrib>Jiang, Chun‐Sheng</creatorcontrib><creatorcontrib>Page, Matthew R.</creatorcontrib><creatorcontrib>Agarwal, Sumit</creatorcontrib><creatorcontrib>Stradins, Paul</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima Anderson, Caroline</au><au>Nemeth, William</au><au>Guthrey, Harvey L.</au><au>Jiang, Chun‐Sheng</au><au>Page, Matthew R.</au><au>Agarwal, Sumit</au><au>Stradins, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching</atitle><jtitle>Advanced energy materials</jtitle><date>2023-01-29</date><risdate>2023</risdate><volume>13</volume><issue>11</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Abstract Monocrystalline Si ( c ‐Si) solar cells with passivating contacts based on doped polycrystalline Si (poly‐Si) on ≈2.0 nm silicon oxide (SiO x ) require &gt;1000 °C thermal processing to create conducting pinholes in the SiO x layer. However, this high thermal budget can induce bulk defects in the Czochralski c ‐Si wafers used as the cell absorber layer. In this work, it is demonstrated that pinholes can instead be created using metal‐assisted chemical etching on planar or textured morphologies, at room temperature. This wet process creates up to 200 nm wide conducting pinholes that are directly observed with transmission electron and atomic force microscopies. High‐performance hole‐selective poly‐Si/SiN y /SiO x and electron‐selective poly‐Si/SiO x passivating contacts are fabricated and implemented in laboratory‐scale solar cells. This process development significantly broadens the range of passivation layer materials, their thicknesses, and surface morphologies, which enables the design of poly‐Si contacts with superior passivating quality.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley &amp; Sons)</pub><orcidid>https://orcid.org/0000000152176815</orcidid><orcidid>https://orcid.org/0000000315373611</orcidid><orcidid>https://orcid.org/0000000315743379</orcidid><orcidid>https://orcid.org/0000000230735564</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-01, Vol.13 (11)
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1961906
source Wiley Online Library All Journals
title Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal‐Assisted Chemical Etching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanopinhole%20Passivating%20Contact%20Si%20Solar%20Cells%20Fabricated%20with%20Metal%E2%80%90Assisted%20Chemical%20Etching&rft.jtitle=Advanced%20energy%20materials&rft.au=Lima%20Anderson,%20Caroline&rft.date=2023-01-29&rft.volume=13&rft.issue=11&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/&rft_dat=%3Costi%3E1961906%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true