Solid-state polymer magnesium supercapacitor

The present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2023-06, Vol.394 (C), p.116189, Article 116189
Hauptverfasser: Trivedi, Meeta, Kyu, Thein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 116189
container_title Solid state ionics
container_volume 394
creator Trivedi, Meeta
Kyu, Thein
description The present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesium bis(trifluoromethane sulfonyl) imide Mg(TFSI)2 salt. The above solid-state Mg-PEM exhibits a Helmholtz electric double-layer capacitor (EDLC) behavior in its supercapacitive symmetric carbonaceous electrode configuration. The electrochemical stability for this PEM membrane (20/40/40 PEGDA/SCN/Mg (TFSI)2) was found to be approximately 3 V from linear sweep voltammetry with a specific capacitance of about 44 F/g from cyclic voltammetry and an energy density of approximately 17 Wh/kg in the 0–2 V range from the constant current density (CCD) experiment. Of particular interest is its excellent capacity retention of over 11,200 cycles, thus tested with the Coulombic efficiency of over 87%. Moreover, the energy density after extensive cycling for 11,200 has increased to approximately 56 Wh/kg at 10 mV/s in the potential range of 0–3 V relative to 17 Wh/kg in the potential range of 0–2 V at the same scan rate, attesting the excellent electrochemical stability and long life of the present Mg-PEM supercapacitor. [Display omitted] •Mg-ion-conducting solid PEM exhibiting room temperature ionic conductivity of 0.45 mS/cm.•PEM is electrochemically stable up to 3 V.•The solid-state EDLC exhibits a capacity value of 44 F/g, energy density of 17 Wh/kg, and power density of 648 W/kg.•EDLC demonstrated cyclic stability of over 11,200 cycles with a capacity retention of 87% and Coulombic efficiency>95%.•Sustain EDLC behavior after rigorous cycling for an extended potential range of 0–3 V.
doi_str_mv 10.1016/j.ssi.2023.116189
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1960840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273823000474</els_id><sourcerecordid>S0167273823000474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-c3a04ce5f93d477a14536e6b5ec0d64da3b1646089fb313275fbe3c5b71db6333</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG_Fs62Zpk1aPMniFyx4UM8hTaaa0jYl6Qr7702pZy8zl_d5Z3gIuQaaAQV-12Uh2CynOcsAOFT1CdlAJfJU8Ko-JZuYEWkuWHVOLkLoKKWcVXxDbt9db00aZjVjMrn-OKBPBvU1YrCHIQmHCb1Wk9J2dv6SnLWqD3j1t7fk8-nxY_eS7t-eX3cP-1QzLuY4FS00lm3NTCGEgqJkHHlToqaGF0axBnjBaVW3DQOWi7JtkOmyEWAazhjbkpu114XZyhBvo_7WbhxRzxLqSBY0hmANae9C8NjKydtB-aMEKhcnspPRiVycyNVJZO5XBuP3Pxb9Uo6jRmP90m2c_Yf-BVhraR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solid-state polymer magnesium supercapacitor</title><source>Elsevier ScienceDirect Journals</source><creator>Trivedi, Meeta ; Kyu, Thein</creator><creatorcontrib>Trivedi, Meeta ; Kyu, Thein</creatorcontrib><description>The present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesium bis(trifluoromethane sulfonyl) imide Mg(TFSI)2 salt. The above solid-state Mg-PEM exhibits a Helmholtz electric double-layer capacitor (EDLC) behavior in its supercapacitive symmetric carbonaceous electrode configuration. The electrochemical stability for this PEM membrane (20/40/40 PEGDA/SCN/Mg (TFSI)2) was found to be approximately 3 V from linear sweep voltammetry with a specific capacitance of about 44 F/g from cyclic voltammetry and an energy density of approximately 17 Wh/kg in the 0–2 V range from the constant current density (CCD) experiment. Of particular interest is its excellent capacity retention of over 11,200 cycles, thus tested with the Coulombic efficiency of over 87%. Moreover, the energy density after extensive cycling for 11,200 has increased to approximately 56 Wh/kg at 10 mV/s in the potential range of 0–3 V relative to 17 Wh/kg in the potential range of 0–2 V at the same scan rate, attesting the excellent electrochemical stability and long life of the present Mg-PEM supercapacitor. [Display omitted] •Mg-ion-conducting solid PEM exhibiting room temperature ionic conductivity of 0.45 mS/cm.•PEM is electrochemically stable up to 3 V.•The solid-state EDLC exhibits a capacity value of 44 F/g, energy density of 17 Wh/kg, and power density of 648 W/kg.•EDLC demonstrated cyclic stability of over 11,200 cycles with a capacity retention of 87% and Coulombic efficiency&gt;95%.•Sustain EDLC behavior after rigorous cycling for an extended potential range of 0–3 V.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2023.116189</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Electric double-layer capacitor ; Magnesium supercapacitor ; Poly(ethylene glycol) diacrylate ; Polymer electrolyte membrane</subject><ispartof>Solid state ionics, 2023-06, Vol.394 (C), p.116189, Article 116189</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-c3a04ce5f93d477a14536e6b5ec0d64da3b1646089fb313275fbe3c5b71db6333</citedby><cites>FETCH-LOGICAL-c367t-c3a04ce5f93d477a14536e6b5ec0d64da3b1646089fb313275fbe3c5b71db6333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167273823000474$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1960840$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Trivedi, Meeta</creatorcontrib><creatorcontrib>Kyu, Thein</creatorcontrib><title>Solid-state polymer magnesium supercapacitor</title><title>Solid state ionics</title><description>The present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesium bis(trifluoromethane sulfonyl) imide Mg(TFSI)2 salt. The above solid-state Mg-PEM exhibits a Helmholtz electric double-layer capacitor (EDLC) behavior in its supercapacitive symmetric carbonaceous electrode configuration. The electrochemical stability for this PEM membrane (20/40/40 PEGDA/SCN/Mg (TFSI)2) was found to be approximately 3 V from linear sweep voltammetry with a specific capacitance of about 44 F/g from cyclic voltammetry and an energy density of approximately 17 Wh/kg in the 0–2 V range from the constant current density (CCD) experiment. Of particular interest is its excellent capacity retention of over 11,200 cycles, thus tested with the Coulombic efficiency of over 87%. Moreover, the energy density after extensive cycling for 11,200 has increased to approximately 56 Wh/kg at 10 mV/s in the potential range of 0–3 V relative to 17 Wh/kg in the potential range of 0–2 V at the same scan rate, attesting the excellent electrochemical stability and long life of the present Mg-PEM supercapacitor. [Display omitted] •Mg-ion-conducting solid PEM exhibiting room temperature ionic conductivity of 0.45 mS/cm.•PEM is electrochemically stable up to 3 V.•The solid-state EDLC exhibits a capacity value of 44 F/g, energy density of 17 Wh/kg, and power density of 648 W/kg.•EDLC demonstrated cyclic stability of over 11,200 cycles with a capacity retention of 87% and Coulombic efficiency&gt;95%.•Sustain EDLC behavior after rigorous cycling for an extended potential range of 0–3 V.</description><subject>Electric double-layer capacitor</subject><subject>Magnesium supercapacitor</subject><subject>Poly(ethylene glycol) diacrylate</subject><subject>Polymer electrolyte membrane</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG_Fs62Zpk1aPMniFyx4UM8hTaaa0jYl6Qr7702pZy8zl_d5Z3gIuQaaAQV-12Uh2CynOcsAOFT1CdlAJfJU8Ko-JZuYEWkuWHVOLkLoKKWcVXxDbt9db00aZjVjMrn-OKBPBvU1YrCHIQmHCb1Wk9J2dv6SnLWqD3j1t7fk8-nxY_eS7t-eX3cP-1QzLuY4FS00lm3NTCGEgqJkHHlToqaGF0axBnjBaVW3DQOWi7JtkOmyEWAazhjbkpu114XZyhBvo_7WbhxRzxLqSBY0hmANae9C8NjKydtB-aMEKhcnspPRiVycyNVJZO5XBuP3Pxb9Uo6jRmP90m2c_Yf-BVhraR8</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Trivedi, Meeta</creator><creator>Kyu, Thein</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>202306</creationdate><title>Solid-state polymer magnesium supercapacitor</title><author>Trivedi, Meeta ; Kyu, Thein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-c3a04ce5f93d477a14536e6b5ec0d64da3b1646089fb313275fbe3c5b71db6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electric double-layer capacitor</topic><topic>Magnesium supercapacitor</topic><topic>Poly(ethylene glycol) diacrylate</topic><topic>Polymer electrolyte membrane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trivedi, Meeta</creatorcontrib><creatorcontrib>Kyu, Thein</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trivedi, Meeta</au><au>Kyu, Thein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state polymer magnesium supercapacitor</atitle><jtitle>Solid state ionics</jtitle><date>2023-06</date><risdate>2023</risdate><volume>394</volume><issue>C</issue><spage>116189</spage><pages>116189-</pages><artnum>116189</artnum><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>The present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesium bis(trifluoromethane sulfonyl) imide Mg(TFSI)2 salt. The above solid-state Mg-PEM exhibits a Helmholtz electric double-layer capacitor (EDLC) behavior in its supercapacitive symmetric carbonaceous electrode configuration. The electrochemical stability for this PEM membrane (20/40/40 PEGDA/SCN/Mg (TFSI)2) was found to be approximately 3 V from linear sweep voltammetry with a specific capacitance of about 44 F/g from cyclic voltammetry and an energy density of approximately 17 Wh/kg in the 0–2 V range from the constant current density (CCD) experiment. Of particular interest is its excellent capacity retention of over 11,200 cycles, thus tested with the Coulombic efficiency of over 87%. Moreover, the energy density after extensive cycling for 11,200 has increased to approximately 56 Wh/kg at 10 mV/s in the potential range of 0–3 V relative to 17 Wh/kg in the potential range of 0–2 V at the same scan rate, attesting the excellent electrochemical stability and long life of the present Mg-PEM supercapacitor. [Display omitted] •Mg-ion-conducting solid PEM exhibiting room temperature ionic conductivity of 0.45 mS/cm.•PEM is electrochemically stable up to 3 V.•The solid-state EDLC exhibits a capacity value of 44 F/g, energy density of 17 Wh/kg, and power density of 648 W/kg.•EDLC demonstrated cyclic stability of over 11,200 cycles with a capacity retention of 87% and Coulombic efficiency&gt;95%.•Sustain EDLC behavior after rigorous cycling for an extended potential range of 0–3 V.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2023.116189</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2023-06, Vol.394 (C), p.116189, Article 116189
issn 0167-2738
1872-7689
language eng
recordid cdi_osti_scitechconnect_1960840
source Elsevier ScienceDirect Journals
subjects Electric double-layer capacitor
Magnesium supercapacitor
Poly(ethylene glycol) diacrylate
Polymer electrolyte membrane
title Solid-state polymer magnesium supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20polymer%20magnesium%20supercapacitor&rft.jtitle=Solid%20state%20ionics&rft.au=Trivedi,%20Meeta&rft.date=2023-06&rft.volume=394&rft.issue=C&rft.spage=116189&rft.pages=116189-&rft.artnum=116189&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2023.116189&rft_dat=%3Celsevier_osti_%3ES0167273823000474%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167273823000474&rfr_iscdi=true