Evaluation of Hybrid Perovskite Prototypes After 10‐Month Space Flight on the International Space Station

Metal halide perovskites (MHPs) have emerged as a prominent new photovoltaic material combining a very competitive power conversion efficiency that rivals crystalline silicon with the added benefits of tunable properties for multijunction devices fabricated from solution which can yield high specifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-05, Vol.13 (19), p.n/a
Hauptverfasser: Delmas, William, Erickson, Samuel, Arteaga, Jorge, Woodall, Mark, Scheibner, Michael, Krause, Timothy S., Crowley, Kyle, VanSant, Kaitlyn T., Luther, Joseph M., Williams, Jennifer N., McNatt, Jeremiah, Peshek, Timothy J., McMillon‐Brown, Lyndsey, Ghosh, Sayantani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced energy materials
container_volume 13
creator Delmas, William
Erickson, Samuel
Arteaga, Jorge
Woodall, Mark
Scheibner, Michael
Krause, Timothy S.
Crowley, Kyle
VanSant, Kaitlyn T.
Luther, Joseph M.
Williams, Jennifer N.
McNatt, Jeremiah
Peshek, Timothy J.
McMillon‐Brown, Lyndsey
Ghosh, Sayantani
description Metal halide perovskites (MHPs) have emerged as a prominent new photovoltaic material combining a very competitive power conversion efficiency that rivals crystalline silicon with the added benefits of tunable properties for multijunction devices fabricated from solution which can yield high specific power. Perovskites have also demonstrated some of the lowest temperature coefficients and highest defect tolerance, which make them excellent candidates for aerospace applications. However, MHPs must demonstrate durability in space which presents different challenges than terrestrial operating environments. To decisively test the viability of perovskites being used in space, a perovskite thin film is positioned in low earth orbit for 10 months on the International Space Station, which was the first long‐duration study of an MHP in space. Postflight high‐resolution ultrafast spectroscopic characterization and comparison with control samples reveal that the flight sample exhibits superior photo‐stability, no irreversible radiation damage, and a suppressed structural phase transition temperature by nearly 65 K, broadening the photovoltaic operational range. Further, significant photo‐annealing of surface defects is shown following prolonged light‐soaking postflight. These results emphasize that methylammonium lead iodide can be packaged adequately for space missions, affirming that space stressors can be managed as theorized. The first long‐duration space flight of a metal halide perovskite thin‐film is conducted in low earth orbit for 10 months on the International Space Station. Postflight analysis reveals that samples exhibit superior photo‐stability, no irreversible radiation damage, and a suppressed structural phase transition temperature, broadening the photovoltaic operational range. Results emphasize that perovskites can be packaged adequately for space missions.
doi_str_mv 10.1002/aenm.202203920
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1960599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815147461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3840-3cd9a0fdd67728f8d6d0e6711c094c242bf3ffffe40c1817c9fb03702db6f9eb3</originalsourceid><addsrcrecordid>eNqFkMFOAjEQhjdGEwly9dzoGZy2y-72SAgICSgJem52u60sLNu1LRhuPoLP6JNYWKJH5zIzyff_mfmD4BZDDwOQh1RW2x4BQoAyAhdBC0c47EZJCJe_MyXXQcfaNfgKGQZKW8FmtE_LXeoKXSGt0OSQmSJHC2n03m4KJ9HCaKfdoZYWDZSTBmH4_vya68qt0LJOhUTjsnhbOeQN3EqiaeWh6mSYlmdi6U77TXCl0tLKzrm3g9fx6GU46c6eH6fDwawrqL-3S0XOUlB5HsUxSVSSRznIKMZYAAsFCUmmqPIlQxA4wbFgKgMaA8mzSDGZ0XZw1_hq6wpuhX9DrISuKikcxyyCPmMeum-g2uj3nbSOr_XOH15aThLcx2EcRthTvYYSRltrpOK1KbapOXAM_Bg8PwbPf4P3AtYIPopSHv6h-WD0NP_T_gB3t4g3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815147461</pqid></control><display><type>article</type><title>Evaluation of Hybrid Perovskite Prototypes After 10‐Month Space Flight on the International Space Station</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Delmas, William ; Erickson, Samuel ; Arteaga, Jorge ; Woodall, Mark ; Scheibner, Michael ; Krause, Timothy S. ; Crowley, Kyle ; VanSant, Kaitlyn T. ; Luther, Joseph M. ; Williams, Jennifer N. ; McNatt, Jeremiah ; Peshek, Timothy J. ; McMillon‐Brown, Lyndsey ; Ghosh, Sayantani</creator><creatorcontrib>Delmas, William ; Erickson, Samuel ; Arteaga, Jorge ; Woodall, Mark ; Scheibner, Michael ; Krause, Timothy S. ; Crowley, Kyle ; VanSant, Kaitlyn T. ; Luther, Joseph M. ; Williams, Jennifer N. ; McNatt, Jeremiah ; Peshek, Timothy J. ; McMillon‐Brown, Lyndsey ; Ghosh, Sayantani</creatorcontrib><description>Metal halide perovskites (MHPs) have emerged as a prominent new photovoltaic material combining a very competitive power conversion efficiency that rivals crystalline silicon with the added benefits of tunable properties for multijunction devices fabricated from solution which can yield high specific power. Perovskites have also demonstrated some of the lowest temperature coefficients and highest defect tolerance, which make them excellent candidates for aerospace applications. However, MHPs must demonstrate durability in space which presents different challenges than terrestrial operating environments. To decisively test the viability of perovskites being used in space, a perovskite thin film is positioned in low earth orbit for 10 months on the International Space Station, which was the first long‐duration study of an MHP in space. Postflight high‐resolution ultrafast spectroscopic characterization and comparison with control samples reveal that the flight sample exhibits superior photo‐stability, no irreversible radiation damage, and a suppressed structural phase transition temperature by nearly 65 K, broadening the photovoltaic operational range. Further, significant photo‐annealing of surface defects is shown following prolonged light‐soaking postflight. These results emphasize that methylammonium lead iodide can be packaged adequately for space missions, affirming that space stressors can be managed as theorized. The first long‐duration space flight of a metal halide perovskite thin‐film is conducted in low earth orbit for 10 months on the International Space Station. Postflight analysis reveals that samples exhibit superior photo‐stability, no irreversible radiation damage, and a suppressed structural phase transition temperature, broadening the photovoltaic operational range. Results emphasize that perovskites can be packaged adequately for space missions.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203920</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aerospace ; Competitive materials ; Crystal defects ; Defect annealing ; Energy conversion efficiency ; International Space Station ; light soaking ; Low earth orbits ; Metal halide perovskites ; Metal halides ; Perovskites ; Phase transitions ; Radiation damage ; Space missions ; Space stations ; spectroscopy ; strain ; structural phase ; Surface defects ; Thin films ; Transition temperature</subject><ispartof>Advanced energy materials, 2023-05, Vol.13 (19), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3840-3cd9a0fdd67728f8d6d0e6711c094c242bf3ffffe40c1817c9fb03702db6f9eb3</citedby><cites>FETCH-LOGICAL-c3840-3cd9a0fdd67728f8d6d0e6711c094c242bf3ffffe40c1817c9fb03702db6f9eb3</cites><orcidid>0000-0002-4650-5499 ; 0000000246505499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202203920$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202203920$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1960599$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Delmas, William</creatorcontrib><creatorcontrib>Erickson, Samuel</creatorcontrib><creatorcontrib>Arteaga, Jorge</creatorcontrib><creatorcontrib>Woodall, Mark</creatorcontrib><creatorcontrib>Scheibner, Michael</creatorcontrib><creatorcontrib>Krause, Timothy S.</creatorcontrib><creatorcontrib>Crowley, Kyle</creatorcontrib><creatorcontrib>VanSant, Kaitlyn T.</creatorcontrib><creatorcontrib>Luther, Joseph M.</creatorcontrib><creatorcontrib>Williams, Jennifer N.</creatorcontrib><creatorcontrib>McNatt, Jeremiah</creatorcontrib><creatorcontrib>Peshek, Timothy J.</creatorcontrib><creatorcontrib>McMillon‐Brown, Lyndsey</creatorcontrib><creatorcontrib>Ghosh, Sayantani</creatorcontrib><title>Evaluation of Hybrid Perovskite Prototypes After 10‐Month Space Flight on the International Space Station</title><title>Advanced energy materials</title><description>Metal halide perovskites (MHPs) have emerged as a prominent new photovoltaic material combining a very competitive power conversion efficiency that rivals crystalline silicon with the added benefits of tunable properties for multijunction devices fabricated from solution which can yield high specific power. Perovskites have also demonstrated some of the lowest temperature coefficients and highest defect tolerance, which make them excellent candidates for aerospace applications. However, MHPs must demonstrate durability in space which presents different challenges than terrestrial operating environments. To decisively test the viability of perovskites being used in space, a perovskite thin film is positioned in low earth orbit for 10 months on the International Space Station, which was the first long‐duration study of an MHP in space. Postflight high‐resolution ultrafast spectroscopic characterization and comparison with control samples reveal that the flight sample exhibits superior photo‐stability, no irreversible radiation damage, and a suppressed structural phase transition temperature by nearly 65 K, broadening the photovoltaic operational range. Further, significant photo‐annealing of surface defects is shown following prolonged light‐soaking postflight. These results emphasize that methylammonium lead iodide can be packaged adequately for space missions, affirming that space stressors can be managed as theorized. The first long‐duration space flight of a metal halide perovskite thin‐film is conducted in low earth orbit for 10 months on the International Space Station. Postflight analysis reveals that samples exhibit superior photo‐stability, no irreversible radiation damage, and a suppressed structural phase transition temperature, broadening the photovoltaic operational range. Results emphasize that perovskites can be packaged adequately for space missions.</description><subject>aerospace</subject><subject>Competitive materials</subject><subject>Crystal defects</subject><subject>Defect annealing</subject><subject>Energy conversion efficiency</subject><subject>International Space Station</subject><subject>light soaking</subject><subject>Low earth orbits</subject><subject>Metal halide perovskites</subject><subject>Metal halides</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Radiation damage</subject><subject>Space missions</subject><subject>Space stations</subject><subject>spectroscopy</subject><subject>strain</subject><subject>structural phase</subject><subject>Surface defects</subject><subject>Thin films</subject><subject>Transition temperature</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOAjEQhjdGEwly9dzoGZy2y-72SAgICSgJem52u60sLNu1LRhuPoLP6JNYWKJH5zIzyff_mfmD4BZDDwOQh1RW2x4BQoAyAhdBC0c47EZJCJe_MyXXQcfaNfgKGQZKW8FmtE_LXeoKXSGt0OSQmSJHC2n03m4KJ9HCaKfdoZYWDZSTBmH4_vya68qt0LJOhUTjsnhbOeQN3EqiaeWh6mSYlmdi6U77TXCl0tLKzrm3g9fx6GU46c6eH6fDwawrqL-3S0XOUlB5HsUxSVSSRznIKMZYAAsFCUmmqPIlQxA4wbFgKgMaA8mzSDGZ0XZw1_hq6wpuhX9DrISuKikcxyyCPmMeum-g2uj3nbSOr_XOH15aThLcx2EcRthTvYYSRltrpOK1KbapOXAM_Bg8PwbPf4P3AtYIPopSHv6h-WD0NP_T_gB3t4g3</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Delmas, William</creator><creator>Erickson, Samuel</creator><creator>Arteaga, Jorge</creator><creator>Woodall, Mark</creator><creator>Scheibner, Michael</creator><creator>Krause, Timothy S.</creator><creator>Crowley, Kyle</creator><creator>VanSant, Kaitlyn T.</creator><creator>Luther, Joseph M.</creator><creator>Williams, Jennifer N.</creator><creator>McNatt, Jeremiah</creator><creator>Peshek, Timothy J.</creator><creator>McMillon‐Brown, Lyndsey</creator><creator>Ghosh, Sayantani</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4650-5499</orcidid><orcidid>https://orcid.org/0000000246505499</orcidid></search><sort><creationdate>20230501</creationdate><title>Evaluation of Hybrid Perovskite Prototypes After 10‐Month Space Flight on the International Space Station</title><author>Delmas, William ; Erickson, Samuel ; Arteaga, Jorge ; Woodall, Mark ; Scheibner, Michael ; Krause, Timothy S. ; Crowley, Kyle ; VanSant, Kaitlyn T. ; Luther, Joseph M. ; Williams, Jennifer N. ; McNatt, Jeremiah ; Peshek, Timothy J. ; McMillon‐Brown, Lyndsey ; Ghosh, Sayantani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3840-3cd9a0fdd67728f8d6d0e6711c094c242bf3ffffe40c1817c9fb03702db6f9eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aerospace</topic><topic>Competitive materials</topic><topic>Crystal defects</topic><topic>Defect annealing</topic><topic>Energy conversion efficiency</topic><topic>International Space Station</topic><topic>light soaking</topic><topic>Low earth orbits</topic><topic>Metal halide perovskites</topic><topic>Metal halides</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Radiation damage</topic><topic>Space missions</topic><topic>Space stations</topic><topic>spectroscopy</topic><topic>strain</topic><topic>structural phase</topic><topic>Surface defects</topic><topic>Thin films</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delmas, William</creatorcontrib><creatorcontrib>Erickson, Samuel</creatorcontrib><creatorcontrib>Arteaga, Jorge</creatorcontrib><creatorcontrib>Woodall, Mark</creatorcontrib><creatorcontrib>Scheibner, Michael</creatorcontrib><creatorcontrib>Krause, Timothy S.</creatorcontrib><creatorcontrib>Crowley, Kyle</creatorcontrib><creatorcontrib>VanSant, Kaitlyn T.</creatorcontrib><creatorcontrib>Luther, Joseph M.</creatorcontrib><creatorcontrib>Williams, Jennifer N.</creatorcontrib><creatorcontrib>McNatt, Jeremiah</creatorcontrib><creatorcontrib>Peshek, Timothy J.</creatorcontrib><creatorcontrib>McMillon‐Brown, Lyndsey</creatorcontrib><creatorcontrib>Ghosh, Sayantani</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delmas, William</au><au>Erickson, Samuel</au><au>Arteaga, Jorge</au><au>Woodall, Mark</au><au>Scheibner, Michael</au><au>Krause, Timothy S.</au><au>Crowley, Kyle</au><au>VanSant, Kaitlyn T.</au><au>Luther, Joseph M.</au><au>Williams, Jennifer N.</au><au>McNatt, Jeremiah</au><au>Peshek, Timothy J.</au><au>McMillon‐Brown, Lyndsey</au><au>Ghosh, Sayantani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Hybrid Perovskite Prototypes After 10‐Month Space Flight on the International Space Station</atitle><jtitle>Advanced energy materials</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>13</volume><issue>19</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Metal halide perovskites (MHPs) have emerged as a prominent new photovoltaic material combining a very competitive power conversion efficiency that rivals crystalline silicon with the added benefits of tunable properties for multijunction devices fabricated from solution which can yield high specific power. Perovskites have also demonstrated some of the lowest temperature coefficients and highest defect tolerance, which make them excellent candidates for aerospace applications. However, MHPs must demonstrate durability in space which presents different challenges than terrestrial operating environments. To decisively test the viability of perovskites being used in space, a perovskite thin film is positioned in low earth orbit for 10 months on the International Space Station, which was the first long‐duration study of an MHP in space. Postflight high‐resolution ultrafast spectroscopic characterization and comparison with control samples reveal that the flight sample exhibits superior photo‐stability, no irreversible radiation damage, and a suppressed structural phase transition temperature by nearly 65 K, broadening the photovoltaic operational range. Further, significant photo‐annealing of surface defects is shown following prolonged light‐soaking postflight. These results emphasize that methylammonium lead iodide can be packaged adequately for space missions, affirming that space stressors can be managed as theorized. The first long‐duration space flight of a metal halide perovskite thin‐film is conducted in low earth orbit for 10 months on the International Space Station. Postflight analysis reveals that samples exhibit superior photo‐stability, no irreversible radiation damage, and a suppressed structural phase transition temperature, broadening the photovoltaic operational range. Results emphasize that perovskites can be packaged adequately for space missions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203920</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4650-5499</orcidid><orcidid>https://orcid.org/0000000246505499</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-05, Vol.13 (19), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1960599
source Wiley Online Library Journals Frontfile Complete
subjects aerospace
Competitive materials
Crystal defects
Defect annealing
Energy conversion efficiency
International Space Station
light soaking
Low earth orbits
Metal halide perovskites
Metal halides
Perovskites
Phase transitions
Radiation damage
Space missions
Space stations
spectroscopy
strain
structural phase
Surface defects
Thin films
Transition temperature
title Evaluation of Hybrid Perovskite Prototypes After 10‐Month Space Flight on the International Space Station
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Hybrid%20Perovskite%20Prototypes%20After%2010%E2%80%90Month%20Space%20Flight%20on%20the%20International%20Space%20Station&rft.jtitle=Advanced%20energy%20materials&rft.au=Delmas,%20William&rft.date=2023-05-01&rft.volume=13&rft.issue=19&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203920&rft_dat=%3Cproquest_osti_%3E2815147461%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815147461&rft_id=info:pmid/&rfr_iscdi=true