A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte
An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2023-02, Vol.379 (6631), p.499-505 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 6631 |
container_start_page | 499 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 379 |
creator | Kondori, Alireza Esmaeilirad, Mohammadreza Ahmad Mosen Harzandi Amine, Rachid Saray, Mahmoud Tamadoni Yu, Lei Liu, Tongchao Wen, Jianguo Shan, Nannan Wang, Hsien-Hau Ngo, Anh T Redfern, Paul C Johnson, Christopher S Khalil Amine Shahbazian-Yassar, Reza Curtiss, Larry A Asadi, Mohammad |
description | An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide–based composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition (see the Perspective by Dong and Lu). The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process. —MSL |
doi_str_mv | 10.1126/science.abq1347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1960522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2772092244</sourcerecordid><originalsourceid>FETCH-LOGICAL-j309t-59fef28a3eb68dc4227a1d847b5de406ecf199ddb844ac86824d9297939da66a3</originalsourceid><addsrcrecordid>eNpd0LtPwzAQBnALgUQpzKwWLCwpfiWxx6riJVXqAiOK_LhQV0nc2s7Q_55UZWK64X76dN8hdE_JglJWPSfrYbCw0OZAuagv0IwSVRaKEX6JZoTwqpCkLq_RTUo7Qqad4jP0vcQxhB5n6PcQdR4j4Ah2q-MPaNMBXnu2KYxO4HDn89aPfaF9xEbnDPGIYTgph80Ra5xC5x2GDmyOoTtmuEVXre4S3P3NOfp6fflcvRfrzdvHarkudpyoXJSqhZZJzcFU0lnBWK2pk6I2pQNBKrAtVco5I4XQVlaSCaeYqhVXTleV5nP0cM4NKftm-kSeKtgwDNMlDVUVKRmb0NMZ7WM4jJBy0_tkoev0AGFMDatrThlV8kQf_9FdGOMwVTgpRhRjQvBf7j1xHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772092244</pqid></control><display><type>article</type><title>A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte</title><source>Science Magazine</source><creator>Kondori, Alireza ; Esmaeilirad, Mohammadreza ; Ahmad Mosen Harzandi ; Amine, Rachid ; Saray, Mahmoud Tamadoni ; Yu, Lei ; Liu, Tongchao ; Wen, Jianguo ; Shan, Nannan ; Wang, Hsien-Hau ; Ngo, Anh T ; Redfern, Paul C ; Johnson, Christopher S ; Khalil Amine ; Shahbazian-Yassar, Reza ; Curtiss, Larry A ; Asadi, Mohammad</creator><creatorcontrib>Kondori, Alireza ; Esmaeilirad, Mohammadreza ; Ahmad Mosen Harzandi ; Amine, Rachid ; Saray, Mahmoud Tamadoni ; Yu, Lei ; Liu, Tongchao ; Wen, Jianguo ; Shan, Nannan ; Wang, Hsien-Hau ; Ngo, Anh T ; Redfern, Paul C ; Johnson, Christopher S ; Khalil Amine ; Shahbazian-Yassar, Reza ; Curtiss, Larry A ; Asadi, Mohammad ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide–based composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition (see the Perspective by Dong and Lu). The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process. —MSL</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abq1347</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Air temperature ; Composite materials ; Decomposition reactions ; Electron transfer ; ENERGY STORAGE ; Gasoline ; Ion currents ; Lithium ; Lithium oxides ; Metal air batteries ; Nanoparticles ; Polyethylene oxide ; Rechargeable batteries ; Redox reactions ; Room temperature ; Solid electrolytes ; Stability</subject><ispartof>Science (American Association for the Advancement of Science), 2023-02, Vol.379 (6631), p.499-505</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000294755396 ; 0000000169592292 ; 0000000192063719 ; 0000000343576889 ; 0000000219239009 ; 0000000303542473 ; 0000000277444780 ; 0000000188558006 ; 0000000215752892 ; 0000000277006246 ; 0000000237550044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1960522$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kondori, Alireza</creatorcontrib><creatorcontrib>Esmaeilirad, Mohammadreza</creatorcontrib><creatorcontrib>Ahmad Mosen Harzandi</creatorcontrib><creatorcontrib>Amine, Rachid</creatorcontrib><creatorcontrib>Saray, Mahmoud Tamadoni</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Shan, Nannan</creatorcontrib><creatorcontrib>Wang, Hsien-Hau</creatorcontrib><creatorcontrib>Ngo, Anh T</creatorcontrib><creatorcontrib>Redfern, Paul C</creatorcontrib><creatorcontrib>Johnson, Christopher S</creatorcontrib><creatorcontrib>Khalil Amine</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Curtiss, Larry A</creatorcontrib><creatorcontrib>Asadi, Mohammad</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte</title><title>Science (American Association for the Advancement of Science)</title><description>An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide–based composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition (see the Perspective by Dong and Lu). The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process. —MSL</description><subject>Air temperature</subject><subject>Composite materials</subject><subject>Decomposition reactions</subject><subject>Electron transfer</subject><subject>ENERGY STORAGE</subject><subject>Gasoline</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium oxides</subject><subject>Metal air batteries</subject><subject>Nanoparticles</subject><subject>Polyethylene oxide</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>Stability</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0LtPwzAQBnALgUQpzKwWLCwpfiWxx6riJVXqAiOK_LhQV0nc2s7Q_55UZWK64X76dN8hdE_JglJWPSfrYbCw0OZAuagv0IwSVRaKEX6JZoTwqpCkLq_RTUo7Qqad4jP0vcQxhB5n6PcQdR4j4Ah2q-MPaNMBXnu2KYxO4HDn89aPfaF9xEbnDPGIYTgph80Ra5xC5x2GDmyOoTtmuEVXre4S3P3NOfp6fflcvRfrzdvHarkudpyoXJSqhZZJzcFU0lnBWK2pk6I2pQNBKrAtVco5I4XQVlaSCaeYqhVXTleV5nP0cM4NKftm-kSeKtgwDNMlDVUVKRmb0NMZ7WM4jJBy0_tkoev0AGFMDatrThlV8kQf_9FdGOMwVTgpRhRjQvBf7j1xHA</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Kondori, Alireza</creator><creator>Esmaeilirad, Mohammadreza</creator><creator>Ahmad Mosen Harzandi</creator><creator>Amine, Rachid</creator><creator>Saray, Mahmoud Tamadoni</creator><creator>Yu, Lei</creator><creator>Liu, Tongchao</creator><creator>Wen, Jianguo</creator><creator>Shan, Nannan</creator><creator>Wang, Hsien-Hau</creator><creator>Ngo, Anh T</creator><creator>Redfern, Paul C</creator><creator>Johnson, Christopher S</creator><creator>Khalil Amine</creator><creator>Shahbazian-Yassar, Reza</creator><creator>Curtiss, Larry A</creator><creator>Asadi, Mohammad</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000294755396</orcidid><orcidid>https://orcid.org/0000000169592292</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000219239009</orcidid><orcidid>https://orcid.org/0000000303542473</orcidid><orcidid>https://orcid.org/0000000277444780</orcidid><orcidid>https://orcid.org/0000000188558006</orcidid><orcidid>https://orcid.org/0000000215752892</orcidid><orcidid>https://orcid.org/0000000277006246</orcidid><orcidid>https://orcid.org/0000000237550044</orcidid></search><sort><creationdate>20230203</creationdate><title>A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte</title><author>Kondori, Alireza ; Esmaeilirad, Mohammadreza ; Ahmad Mosen Harzandi ; Amine, Rachid ; Saray, Mahmoud Tamadoni ; Yu, Lei ; Liu, Tongchao ; Wen, Jianguo ; Shan, Nannan ; Wang, Hsien-Hau ; Ngo, Anh T ; Redfern, Paul C ; Johnson, Christopher S ; Khalil Amine ; Shahbazian-Yassar, Reza ; Curtiss, Larry A ; Asadi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j309t-59fef28a3eb68dc4227a1d847b5de406ecf199ddb844ac86824d9297939da66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air temperature</topic><topic>Composite materials</topic><topic>Decomposition reactions</topic><topic>Electron transfer</topic><topic>ENERGY STORAGE</topic><topic>Gasoline</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium oxides</topic><topic>Metal air batteries</topic><topic>Nanoparticles</topic><topic>Polyethylene oxide</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondori, Alireza</creatorcontrib><creatorcontrib>Esmaeilirad, Mohammadreza</creatorcontrib><creatorcontrib>Ahmad Mosen Harzandi</creatorcontrib><creatorcontrib>Amine, Rachid</creatorcontrib><creatorcontrib>Saray, Mahmoud Tamadoni</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Shan, Nannan</creatorcontrib><creatorcontrib>Wang, Hsien-Hau</creatorcontrib><creatorcontrib>Ngo, Anh T</creatorcontrib><creatorcontrib>Redfern, Paul C</creatorcontrib><creatorcontrib>Johnson, Christopher S</creatorcontrib><creatorcontrib>Khalil Amine</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Curtiss, Larry A</creatorcontrib><creatorcontrib>Asadi, Mohammad</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondori, Alireza</au><au>Esmaeilirad, Mohammadreza</au><au>Ahmad Mosen Harzandi</au><au>Amine, Rachid</au><au>Saray, Mahmoud Tamadoni</au><au>Yu, Lei</au><au>Liu, Tongchao</au><au>Wen, Jianguo</au><au>Shan, Nannan</au><au>Wang, Hsien-Hau</au><au>Ngo, Anh T</au><au>Redfern, Paul C</au><au>Johnson, Christopher S</au><au>Khalil Amine</au><au>Shahbazian-Yassar, Reza</au><au>Curtiss, Larry A</au><au>Asadi, Mohammad</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2023-02-03</date><risdate>2023</risdate><volume>379</volume><issue>6631</issue><spage>499</spage><epage>505</epage><pages>499-505</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide–based composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition (see the Perspective by Dong and Lu). The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process. —MSL</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abq1347</doi><tpages>7</tpages><orcidid>https://orcid.org/0000000294755396</orcidid><orcidid>https://orcid.org/0000000169592292</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000219239009</orcidid><orcidid>https://orcid.org/0000000303542473</orcidid><orcidid>https://orcid.org/0000000277444780</orcidid><orcidid>https://orcid.org/0000000188558006</orcidid><orcidid>https://orcid.org/0000000215752892</orcidid><orcidid>https://orcid.org/0000000277006246</orcidid><orcidid>https://orcid.org/0000000237550044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2023-02, Vol.379 (6631), p.499-505 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1960522 |
source | Science Magazine |
subjects | Air temperature Composite materials Decomposition reactions Electron transfer ENERGY STORAGE Gasoline Ion currents Lithium Lithium oxides Metal air batteries Nanoparticles Polyethylene oxide Rechargeable batteries Redox reactions Room temperature Solid electrolytes Stability |
title | A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20room%20temperature%20rechargeable%20Li2O-based%20lithium-air%20battery%20enabled%20by%20a%20solid%20electrolyte&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kondori,%20Alireza&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-02-03&rft.volume=379&rft.issue=6631&rft.spage=499&rft.epage=505&rft.pages=499-505&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abq1347&rft_dat=%3Cproquest_osti_%3E2772092244%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2772092244&rft_id=info:pmid/&rfr_iscdi=true |