A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte

An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2023-02, Vol.379 (6631), p.499-505
Hauptverfasser: Kondori, Alireza, Esmaeilirad, Mohammadreza, Ahmad Mosen Harzandi, Amine, Rachid, Saray, Mahmoud Tamadoni, Yu, Lei, Liu, Tongchao, Wen, Jianguo, Shan, Nannan, Wang, Hsien-Hau, Ngo, Anh T, Redfern, Paul C, Johnson, Christopher S, Khalil Amine, Shahbazian-Yassar, Reza, Curtiss, Larry A, Asadi, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 6631
container_start_page 499
container_title Science (American Association for the Advancement of Science)
container_volume 379
creator Kondori, Alireza
Esmaeilirad, Mohammadreza
Ahmad Mosen Harzandi
Amine, Rachid
Saray, Mahmoud Tamadoni
Yu, Lei
Liu, Tongchao
Wen, Jianguo
Shan, Nannan
Wang, Hsien-Hau
Ngo, Anh T
Redfern, Paul C
Johnson, Christopher S
Khalil Amine
Shahbazian-Yassar, Reza
Curtiss, Larry A
Asadi, Mohammad
description An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide–based composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition (see the Perspective by Dong and Lu). The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process. —MSL
doi_str_mv 10.1126/science.abq1347
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1960522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2772092244</sourcerecordid><originalsourceid>FETCH-LOGICAL-j309t-59fef28a3eb68dc4227a1d847b5de406ecf199ddb844ac86824d9297939da66a3</originalsourceid><addsrcrecordid>eNpd0LtPwzAQBnALgUQpzKwWLCwpfiWxx6riJVXqAiOK_LhQV0nc2s7Q_55UZWK64X76dN8hdE_JglJWPSfrYbCw0OZAuagv0IwSVRaKEX6JZoTwqpCkLq_RTUo7Qqad4jP0vcQxhB5n6PcQdR4j4Ah2q-MPaNMBXnu2KYxO4HDn89aPfaF9xEbnDPGIYTgph80Ra5xC5x2GDmyOoTtmuEVXre4S3P3NOfp6fflcvRfrzdvHarkudpyoXJSqhZZJzcFU0lnBWK2pk6I2pQNBKrAtVco5I4XQVlaSCaeYqhVXTleV5nP0cM4NKftm-kSeKtgwDNMlDVUVKRmb0NMZ7WM4jJBy0_tkoev0AGFMDatrThlV8kQf_9FdGOMwVTgpRhRjQvBf7j1xHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772092244</pqid></control><display><type>article</type><title>A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte</title><source>Science Magazine</source><creator>Kondori, Alireza ; Esmaeilirad, Mohammadreza ; Ahmad Mosen Harzandi ; Amine, Rachid ; Saray, Mahmoud Tamadoni ; Yu, Lei ; Liu, Tongchao ; Wen, Jianguo ; Shan, Nannan ; Wang, Hsien-Hau ; Ngo, Anh T ; Redfern, Paul C ; Johnson, Christopher S ; Khalil Amine ; Shahbazian-Yassar, Reza ; Curtiss, Larry A ; Asadi, Mohammad</creator><creatorcontrib>Kondori, Alireza ; Esmaeilirad, Mohammadreza ; Ahmad Mosen Harzandi ; Amine, Rachid ; Saray, Mahmoud Tamadoni ; Yu, Lei ; Liu, Tongchao ; Wen, Jianguo ; Shan, Nannan ; Wang, Hsien-Hau ; Ngo, Anh T ; Redfern, Paul C ; Johnson, Christopher S ; Khalil Amine ; Shahbazian-Yassar, Reza ; Curtiss, Larry A ; Asadi, Mohammad ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide–based composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition (see the Perspective by Dong and Lu). The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process. —MSL</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abq1347</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Air temperature ; Composite materials ; Decomposition reactions ; Electron transfer ; ENERGY STORAGE ; Gasoline ; Ion currents ; Lithium ; Lithium oxides ; Metal air batteries ; Nanoparticles ; Polyethylene oxide ; Rechargeable batteries ; Redox reactions ; Room temperature ; Solid electrolytes ; Stability</subject><ispartof>Science (American Association for the Advancement of Science), 2023-02, Vol.379 (6631), p.499-505</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000294755396 ; 0000000169592292 ; 0000000192063719 ; 0000000343576889 ; 0000000219239009 ; 0000000303542473 ; 0000000277444780 ; 0000000188558006 ; 0000000215752892 ; 0000000277006246 ; 0000000237550044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1960522$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kondori, Alireza</creatorcontrib><creatorcontrib>Esmaeilirad, Mohammadreza</creatorcontrib><creatorcontrib>Ahmad Mosen Harzandi</creatorcontrib><creatorcontrib>Amine, Rachid</creatorcontrib><creatorcontrib>Saray, Mahmoud Tamadoni</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Shan, Nannan</creatorcontrib><creatorcontrib>Wang, Hsien-Hau</creatorcontrib><creatorcontrib>Ngo, Anh T</creatorcontrib><creatorcontrib>Redfern, Paul C</creatorcontrib><creatorcontrib>Johnson, Christopher S</creatorcontrib><creatorcontrib>Khalil Amine</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Curtiss, Larry A</creatorcontrib><creatorcontrib>Asadi, Mohammad</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte</title><title>Science (American Association for the Advancement of Science)</title><description>An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide–based composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition (see the Perspective by Dong and Lu). The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process. —MSL</description><subject>Air temperature</subject><subject>Composite materials</subject><subject>Decomposition reactions</subject><subject>Electron transfer</subject><subject>ENERGY STORAGE</subject><subject>Gasoline</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium oxides</subject><subject>Metal air batteries</subject><subject>Nanoparticles</subject><subject>Polyethylene oxide</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>Stability</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0LtPwzAQBnALgUQpzKwWLCwpfiWxx6riJVXqAiOK_LhQV0nc2s7Q_55UZWK64X76dN8hdE_JglJWPSfrYbCw0OZAuagv0IwSVRaKEX6JZoTwqpCkLq_RTUo7Qqad4jP0vcQxhB5n6PcQdR4j4Ah2q-MPaNMBXnu2KYxO4HDn89aPfaF9xEbnDPGIYTgph80Ra5xC5x2GDmyOoTtmuEVXre4S3P3NOfp6fflcvRfrzdvHarkudpyoXJSqhZZJzcFU0lnBWK2pk6I2pQNBKrAtVco5I4XQVlaSCaeYqhVXTleV5nP0cM4NKftm-kSeKtgwDNMlDVUVKRmb0NMZ7WM4jJBy0_tkoev0AGFMDatrThlV8kQf_9FdGOMwVTgpRhRjQvBf7j1xHA</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Kondori, Alireza</creator><creator>Esmaeilirad, Mohammadreza</creator><creator>Ahmad Mosen Harzandi</creator><creator>Amine, Rachid</creator><creator>Saray, Mahmoud Tamadoni</creator><creator>Yu, Lei</creator><creator>Liu, Tongchao</creator><creator>Wen, Jianguo</creator><creator>Shan, Nannan</creator><creator>Wang, Hsien-Hau</creator><creator>Ngo, Anh T</creator><creator>Redfern, Paul C</creator><creator>Johnson, Christopher S</creator><creator>Khalil Amine</creator><creator>Shahbazian-Yassar, Reza</creator><creator>Curtiss, Larry A</creator><creator>Asadi, Mohammad</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000294755396</orcidid><orcidid>https://orcid.org/0000000169592292</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000219239009</orcidid><orcidid>https://orcid.org/0000000303542473</orcidid><orcidid>https://orcid.org/0000000277444780</orcidid><orcidid>https://orcid.org/0000000188558006</orcidid><orcidid>https://orcid.org/0000000215752892</orcidid><orcidid>https://orcid.org/0000000277006246</orcidid><orcidid>https://orcid.org/0000000237550044</orcidid></search><sort><creationdate>20230203</creationdate><title>A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte</title><author>Kondori, Alireza ; Esmaeilirad, Mohammadreza ; Ahmad Mosen Harzandi ; Amine, Rachid ; Saray, Mahmoud Tamadoni ; Yu, Lei ; Liu, Tongchao ; Wen, Jianguo ; Shan, Nannan ; Wang, Hsien-Hau ; Ngo, Anh T ; Redfern, Paul C ; Johnson, Christopher S ; Khalil Amine ; Shahbazian-Yassar, Reza ; Curtiss, Larry A ; Asadi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j309t-59fef28a3eb68dc4227a1d847b5de406ecf199ddb844ac86824d9297939da66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air temperature</topic><topic>Composite materials</topic><topic>Decomposition reactions</topic><topic>Electron transfer</topic><topic>ENERGY STORAGE</topic><topic>Gasoline</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium oxides</topic><topic>Metal air batteries</topic><topic>Nanoparticles</topic><topic>Polyethylene oxide</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondori, Alireza</creatorcontrib><creatorcontrib>Esmaeilirad, Mohammadreza</creatorcontrib><creatorcontrib>Ahmad Mosen Harzandi</creatorcontrib><creatorcontrib>Amine, Rachid</creatorcontrib><creatorcontrib>Saray, Mahmoud Tamadoni</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Shan, Nannan</creatorcontrib><creatorcontrib>Wang, Hsien-Hau</creatorcontrib><creatorcontrib>Ngo, Anh T</creatorcontrib><creatorcontrib>Redfern, Paul C</creatorcontrib><creatorcontrib>Johnson, Christopher S</creatorcontrib><creatorcontrib>Khalil Amine</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Curtiss, Larry A</creatorcontrib><creatorcontrib>Asadi, Mohammad</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondori, Alireza</au><au>Esmaeilirad, Mohammadreza</au><au>Ahmad Mosen Harzandi</au><au>Amine, Rachid</au><au>Saray, Mahmoud Tamadoni</au><au>Yu, Lei</au><au>Liu, Tongchao</au><au>Wen, Jianguo</au><au>Shan, Nannan</au><au>Wang, Hsien-Hau</au><au>Ngo, Anh T</au><au>Redfern, Paul C</au><au>Johnson, Christopher S</au><au>Khalil Amine</au><au>Shahbazian-Yassar, Reza</au><au>Curtiss, Larry A</au><au>Asadi, Mohammad</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2023-02-03</date><risdate>2023</risdate><volume>379</volume><issue>6631</issue><spage>499</spage><epage>505</epage><pages>499-505</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>An enabling composite electrolyteLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide–based composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition (see the Perspective by Dong and Lu). The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process. —MSL</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abq1347</doi><tpages>7</tpages><orcidid>https://orcid.org/0000000294755396</orcidid><orcidid>https://orcid.org/0000000169592292</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000219239009</orcidid><orcidid>https://orcid.org/0000000303542473</orcidid><orcidid>https://orcid.org/0000000277444780</orcidid><orcidid>https://orcid.org/0000000188558006</orcidid><orcidid>https://orcid.org/0000000215752892</orcidid><orcidid>https://orcid.org/0000000277006246</orcidid><orcidid>https://orcid.org/0000000237550044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2023-02, Vol.379 (6631), p.499-505
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1960522
source Science Magazine
subjects Air temperature
Composite materials
Decomposition reactions
Electron transfer
ENERGY STORAGE
Gasoline
Ion currents
Lithium
Lithium oxides
Metal air batteries
Nanoparticles
Polyethylene oxide
Rechargeable batteries
Redox reactions
Room temperature
Solid electrolytes
Stability
title A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20room%20temperature%20rechargeable%20Li2O-based%20lithium-air%20battery%20enabled%20by%20a%20solid%20electrolyte&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kondori,%20Alireza&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-02-03&rft.volume=379&rft.issue=6631&rft.spage=499&rft.epage=505&rft.pages=499-505&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abq1347&rft_dat=%3Cproquest_osti_%3E2772092244%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2772092244&rft_id=info:pmid/&rfr_iscdi=true