Slater transition methods for core-level electron binding energies
Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept i...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-03, Vol.158 (9), p.094111-094111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 094111 |
---|---|
container_issue | 9 |
container_start_page | 094111 |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Jana, Subrata Herbert, John M. |
description | Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy. |
doi_str_mv | 10.1063/5.0134459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1960069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785200667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f95701c16c35c538e9c4840fdafd1c7f08128c925fb1cda930314398df1f819d3</originalsourceid><addsrcrecordid>eNp90MFrFDEUBvAgil2rB_8BGfSiwtT3JpNMcqylVaHgQT2H2eSlTZlN1iRb8L83y64Kgp5yyI-P732MPUc4Q5D8nTgD5OMo9AO2QlC6n6SGh2wFMGCvJcgT9qSUOwDAaRgfsxMuldJ6kiv2_ssyV8pdzXMsoYYUuw3V2-RK51PubMrUL3RPS0cL2Zrb_zpEF-JNR5HyTaDylD3y81Lo2fE9Zd-uLr9efOyvP3_4dHF-3dtWrfZeiwnQorRcWMEVaTuqEbybvUM7eVA4KKsH4ddo3aw5cBy5Vs6jV6gdP2UvD7mp1GCKDZXsrU0xtl4G25kgdUOvD2ib0_cdlWo2oVhaljlS2hUzTEoMTcqp0Vd_0bu0y7GdsFdcAIKWTb05KJtTKZm82eawmfMPg2D26xthjus3--KYuFtvyP2Wv-Zu4O0B7NvP-7X_m_ZPfJ_yH2i2zvOfMPyZJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783501096</pqid></control><display><type>article</type><title>Slater transition methods for core-level electron binding energies</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jana, Subrata ; Herbert, John M.</creator><creatorcontrib>Jana, Subrata ; Herbert, John M.</creatorcontrib><description>Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0134459</identifier><identifier>PMID: 36889976</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binding energy ; Eigenvalues ; Electron states ; Energy levels ; Ionization ; Self consistent fields ; Spectrum analysis</subject><ispartof>The Journal of chemical physics, 2023-03, Vol.158 (9), p.094111-094111</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f95701c16c35c538e9c4840fdafd1c7f08128c925fb1cda930314398df1f819d3</citedby><cites>FETCH-LOGICAL-c445t-f95701c16c35c538e9c4840fdafd1c7f08128c925fb1cda930314398df1f819d3</cites><orcidid>0000-0002-3736-1948 ; 0000-0002-1663-2278 ; 0000000237361948 ; 0000000216632278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0134459$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36889976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1960069$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jana, Subrata</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><title>Slater transition methods for core-level electron binding energies</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.</description><subject>Binding energy</subject><subject>Eigenvalues</subject><subject>Electron states</subject><subject>Energy levels</subject><subject>Ionization</subject><subject>Self consistent fields</subject><subject>Spectrum analysis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MFrFDEUBvAgil2rB_8BGfSiwtT3JpNMcqylVaHgQT2H2eSlTZlN1iRb8L83y64Kgp5yyI-P732MPUc4Q5D8nTgD5OMo9AO2QlC6n6SGh2wFMGCvJcgT9qSUOwDAaRgfsxMuldJ6kiv2_ssyV8pdzXMsoYYUuw3V2-RK51PubMrUL3RPS0cL2Zrb_zpEF-JNR5HyTaDylD3y81Lo2fE9Zd-uLr9efOyvP3_4dHF-3dtWrfZeiwnQorRcWMEVaTuqEbybvUM7eVA4KKsH4ddo3aw5cBy5Vs6jV6gdP2UvD7mp1GCKDZXsrU0xtl4G25kgdUOvD2ib0_cdlWo2oVhaljlS2hUzTEoMTcqp0Vd_0bu0y7GdsFdcAIKWTb05KJtTKZm82eawmfMPg2D26xthjus3--KYuFtvyP2Wv-Zu4O0B7NvP-7X_m_ZPfJ_yH2i2zvOfMPyZJw</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Jana, Subrata</creator><creator>Herbert, John M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3736-1948</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid><orcidid>https://orcid.org/0000000237361948</orcidid><orcidid>https://orcid.org/0000000216632278</orcidid></search><sort><creationdate>20230307</creationdate><title>Slater transition methods for core-level electron binding energies</title><author>Jana, Subrata ; Herbert, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f95701c16c35c538e9c4840fdafd1c7f08128c925fb1cda930314398df1f819d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding energy</topic><topic>Eigenvalues</topic><topic>Electron states</topic><topic>Energy levels</topic><topic>Ionization</topic><topic>Self consistent fields</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jana, Subrata</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jana, Subrata</au><au>Herbert, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slater transition methods for core-level electron binding energies</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-03-07</date><risdate>2023</risdate><volume>158</volume><issue>9</issue><spage>094111</spage><epage>094111</epage><pages>094111-094111</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36889976</pmid><doi>10.1063/5.0134459</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3736-1948</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid><orcidid>https://orcid.org/0000000237361948</orcidid><orcidid>https://orcid.org/0000000216632278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-03, Vol.158 (9), p.094111-094111 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1960069 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Binding energy Eigenvalues Electron states Energy levels Ionization Self consistent fields Spectrum analysis |
title | Slater transition methods for core-level electron binding energies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slater%20transition%20methods%20for%20core-level%20electron%20binding%20energies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Jana,%20Subrata&rft.date=2023-03-07&rft.volume=158&rft.issue=9&rft.spage=094111&rft.epage=094111&rft.pages=094111-094111&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0134459&rft_dat=%3Cproquest_osti_%3E2785200667%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783501096&rft_id=info:pmid/36889976&rfr_iscdi=true |