Slater transition methods for core-level electron binding energies

Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-03, Vol.158 (9), p.094111-094111
Hauptverfasser: Jana, Subrata, Herbert, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094111
container_issue 9
container_start_page 094111
container_title The Journal of chemical physics
container_volume 158
creator Jana, Subrata
Herbert, John M.
description Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.
doi_str_mv 10.1063/5.0134459
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1960069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785200667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f95701c16c35c538e9c4840fdafd1c7f08128c925fb1cda930314398df1f819d3</originalsourceid><addsrcrecordid>eNp90MFrFDEUBvAgil2rB_8BGfSiwtT3JpNMcqylVaHgQT2H2eSlTZlN1iRb8L83y64Kgp5yyI-P732MPUc4Q5D8nTgD5OMo9AO2QlC6n6SGh2wFMGCvJcgT9qSUOwDAaRgfsxMuldJ6kiv2_ssyV8pdzXMsoYYUuw3V2-RK51PubMrUL3RPS0cL2Zrb_zpEF-JNR5HyTaDylD3y81Lo2fE9Zd-uLr9efOyvP3_4dHF-3dtWrfZeiwnQorRcWMEVaTuqEbybvUM7eVA4KKsH4ddo3aw5cBy5Vs6jV6gdP2UvD7mp1GCKDZXsrU0xtl4G25kgdUOvD2ib0_cdlWo2oVhaljlS2hUzTEoMTcqp0Vd_0bu0y7GdsFdcAIKWTb05KJtTKZm82eawmfMPg2D26xthjus3--KYuFtvyP2Wv-Zu4O0B7NvP-7X_m_ZPfJ_yH2i2zvOfMPyZJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783501096</pqid></control><display><type>article</type><title>Slater transition methods for core-level electron binding energies</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jana, Subrata ; Herbert, John M.</creator><creatorcontrib>Jana, Subrata ; Herbert, John M.</creatorcontrib><description>Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0134459</identifier><identifier>PMID: 36889976</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binding energy ; Eigenvalues ; Electron states ; Energy levels ; Ionization ; Self consistent fields ; Spectrum analysis</subject><ispartof>The Journal of chemical physics, 2023-03, Vol.158 (9), p.094111-094111</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f95701c16c35c538e9c4840fdafd1c7f08128c925fb1cda930314398df1f819d3</citedby><cites>FETCH-LOGICAL-c445t-f95701c16c35c538e9c4840fdafd1c7f08128c925fb1cda930314398df1f819d3</cites><orcidid>0000-0002-3736-1948 ; 0000-0002-1663-2278 ; 0000000237361948 ; 0000000216632278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0134459$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36889976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1960069$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jana, Subrata</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><title>Slater transition methods for core-level electron binding energies</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.</description><subject>Binding energy</subject><subject>Eigenvalues</subject><subject>Electron states</subject><subject>Energy levels</subject><subject>Ionization</subject><subject>Self consistent fields</subject><subject>Spectrum analysis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MFrFDEUBvAgil2rB_8BGfSiwtT3JpNMcqylVaHgQT2H2eSlTZlN1iRb8L83y64Kgp5yyI-P732MPUc4Q5D8nTgD5OMo9AO2QlC6n6SGh2wFMGCvJcgT9qSUOwDAaRgfsxMuldJ6kiv2_ssyV8pdzXMsoYYUuw3V2-RK51PubMrUL3RPS0cL2Zrb_zpEF-JNR5HyTaDylD3y81Lo2fE9Zd-uLr9efOyvP3_4dHF-3dtWrfZeiwnQorRcWMEVaTuqEbybvUM7eVA4KKsH4ddo3aw5cBy5Vs6jV6gdP2UvD7mp1GCKDZXsrU0xtl4G25kgdUOvD2ib0_cdlWo2oVhaljlS2hUzTEoMTcqp0Vd_0bu0y7GdsFdcAIKWTb05KJtTKZm82eawmfMPg2D26xthjus3--KYuFtvyP2Wv-Zu4O0B7NvP-7X_m_ZPfJ_yH2i2zvOfMPyZJw</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Jana, Subrata</creator><creator>Herbert, John M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3736-1948</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid><orcidid>https://orcid.org/0000000237361948</orcidid><orcidid>https://orcid.org/0000000216632278</orcidid></search><sort><creationdate>20230307</creationdate><title>Slater transition methods for core-level electron binding energies</title><author>Jana, Subrata ; Herbert, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f95701c16c35c538e9c4840fdafd1c7f08128c925fb1cda930314398df1f819d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding energy</topic><topic>Eigenvalues</topic><topic>Electron states</topic><topic>Energy levels</topic><topic>Ionization</topic><topic>Self consistent fields</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jana, Subrata</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jana, Subrata</au><au>Herbert, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slater transition methods for core-level electron binding energies</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-03-07</date><risdate>2023</risdate><volume>158</volume><issue>9</issue><spage>094111</spage><epage>094111</epage><pages>094111-094111</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36889976</pmid><doi>10.1063/5.0134459</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3736-1948</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid><orcidid>https://orcid.org/0000000237361948</orcidid><orcidid>https://orcid.org/0000000216632278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-03, Vol.158 (9), p.094111-094111
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1960069
source AIP Journals Complete; Alma/SFX Local Collection
subjects Binding energy
Eigenvalues
Electron states
Energy levels
Ionization
Self consistent fields
Spectrum analysis
title Slater transition methods for core-level electron binding energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slater%20transition%20methods%20for%20core-level%20electron%20binding%20energies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Jana,%20Subrata&rft.date=2023-03-07&rft.volume=158&rft.issue=9&rft.spage=094111&rft.epage=094111&rft.pages=094111-094111&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0134459&rft_dat=%3Cproquest_osti_%3E2785200667%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783501096&rft_id=info:pmid/36889976&rfr_iscdi=true