Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential

Global crude‐oil transportation contributes a significant portion of greenhouse gas (GHG) emissions in the marine transportation sector. In this work, we first compile a detailed country‐level global crude‐oil transportation network in 2018 and estimate that the direct and well‐to‐hull GHG emissions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial ecology 2022-12, Vol.26 (6), p.2045-2056
Hauptverfasser: Ankathi, Sharath, Lu, Zifeng, Zaimes, George G., Hawkins, Troy, Gan, Yu, Wang, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2056
container_issue 6
container_start_page 2045
container_title Journal of industrial ecology
container_volume 26
creator Ankathi, Sharath
Lu, Zifeng
Zaimes, George G.
Hawkins, Troy
Gan, Yu
Wang, Michael
description Global crude‐oil transportation contributes a significant portion of greenhouse gas (GHG) emissions in the marine transportation sector. In this work, we first compile a detailed country‐level global crude‐oil transportation network in 2018 and estimate that the direct and well‐to‐hull GHG emissions related to crude transportation were 97 and 109 million metric tons, respectively. Combining with the country‐specific crude recovery GHG intensities, the consumption‐based well‐to‐country‐gate crude‐oil GHG intensities are derived for individual countries, ranging from 2.99 to 27.32 g CO2eq/MJ, with a global crude‐volume‐weighted average of 8.67 g CO2eq/MJ. We then project the global crude transportation emissions at the regional level in 2050 under a static (no change) scenario (based on current ship energy efficiency) and a sustainable‐development (SD) scenario (based on the International Energy Agency's projections of ship energy efficiency and penetration of alternative marine fuels). Results show that the global well‐to‐hull GHG emissions related to crude transportation would be 82 and 59 million metric tons in 2050 in the static and SD scenarios, respectively. To further evaluate the impact of potential fuel‐switching on decarbonizing the crude oil transportation sector, we estimate the GHG emissions for 20 fuel/production options in 2050. We find that, in comparison to the static scenario, ∼50% reduction in global well‐to‐hull GHG emissions from crude transportation could be achieved under the SD scenario if green ammonia further replaces conventional ammonia. The methodology developed here can be applied to other commodities to estimate the emissions associated with their global marine transportation and to evaluate the potential emission mitigation options.
doi_str_mv 10.1111/jiec.13262
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1959832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758525153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3642-b79d55a54144a598efa88bc68eb9ab84877016fa7c25a4379fde4552444e38293</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqWw8Ass2JBSbMdObDZUlVJUiQVmy3EvraskLrYj1H-PS5i55U73vns6vSy7JXhGUj3uLZgZKWhJz7IJ4QXOJZX4PM1YiJxIgS-zqxD2GJOipHiSdUsP0O_cEABtdUDQ2RCs6wNqvOtQ3KV162rdouh1Hw7ORx2TjlyDjB82gJxtn9B88B76iEJSh4B0v0GdjXY7sgcXk2h1e51dNLoNcPPXp9nny-Jj_pqv35er-fM6N0XJaF5XcsO55owwprkU0GghalMKqKWuBRNVhUnZ6MpQrllRyWYDjHPKGINCUFlMs7vR14VoVTA2gtkZ1_dgoiIyWRY0QfcjdPDua4AQ1d4Nvk9_KVpxwSlPASbqYaSMdyF4aNTB2077oyJYnTJXp8zVb-YJJiP8bVs4_kOqt9ViPt78AKulhHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758525153</pqid></control><display><type>article</type><title>Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential</title><source>Wiley Online Library All Journals</source><creator>Ankathi, Sharath ; Lu, Zifeng ; Zaimes, George G. ; Hawkins, Troy ; Gan, Yu ; Wang, Michael</creator><creatorcontrib>Ankathi, Sharath ; Lu, Zifeng ; Zaimes, George G. ; Hawkins, Troy ; Gan, Yu ; Wang, Michael ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Global crude‐oil transportation contributes a significant portion of greenhouse gas (GHG) emissions in the marine transportation sector. In this work, we first compile a detailed country‐level global crude‐oil transportation network in 2018 and estimate that the direct and well‐to‐hull GHG emissions related to crude transportation were 97 and 109 million metric tons, respectively. Combining with the country‐specific crude recovery GHG intensities, the consumption‐based well‐to‐country‐gate crude‐oil GHG intensities are derived for individual countries, ranging from 2.99 to 27.32 g CO2eq/MJ, with a global crude‐volume‐weighted average of 8.67 g CO2eq/MJ. We then project the global crude transportation emissions at the regional level in 2050 under a static (no change) scenario (based on current ship energy efficiency) and a sustainable‐development (SD) scenario (based on the International Energy Agency's projections of ship energy efficiency and penetration of alternative marine fuels). Results show that the global well‐to‐hull GHG emissions related to crude transportation would be 82 and 59 million metric tons in 2050 in the static and SD scenarios, respectively. To further evaluate the impact of potential fuel‐switching on decarbonizing the crude oil transportation sector, we estimate the GHG emissions for 20 fuel/production options in 2050. We find that, in comparison to the static scenario, ∼50% reduction in global well‐to‐hull GHG emissions from crude transportation could be achieved under the SD scenario if green ammonia further replaces conventional ammonia. The methodology developed here can be applied to other commodities to estimate the emissions associated with their global marine transportation and to evaluate the potential emission mitigation options.</description><identifier>ISSN: 1088-1980</identifier><identifier>EISSN: 1530-9290</identifier><identifier>DOI: 10.1111/jiec.13262</identifier><language>eng</language><publisher>New Haven: Wiley Subscription Services, Inc</publisher><subject>Alternative fuels ; Ammonia ; Averages ; Crude oil ; Decarbonization ; Emission analysis ; Emissions ; Energy efficiency ; ENVIRONMENTAL SCIENCES ; Fuels ; global transportation ; greenhouse gas emissions ; Greenhouse gases ; industrial ecology ; lifecycle analysis ; Marine transportation ; maritime transport ; Mitigation ; Oil ; Penetration ; Petroleum ; Projections ; Sustainable development ; Transportation ; Transportation industry ; Transportation networks</subject><ispartof>Journal of industrial ecology, 2022-12, Vol.26 (6), p.2045-2056</ispartof><rights>2022 UChicago Argonne, LLC, Operator of Argonne National Laboratory. published by Wiley Periodicals LLC on behalf of International Society for Industrial Ecology.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3642-b79d55a54144a598efa88bc68eb9ab84877016fa7c25a4379fde4552444e38293</citedby><cites>FETCH-LOGICAL-c3642-b79d55a54144a598efa88bc68eb9ab84877016fa7c25a4379fde4552444e38293</cites><orcidid>0000-0002-8289-0945 ; 0000-0001-7331-5861 ; 0000000282890945 ; 0000000173315861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjiec.13262$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjiec.13262$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1959832$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ankathi, Sharath</creatorcontrib><creatorcontrib>Lu, Zifeng</creatorcontrib><creatorcontrib>Zaimes, George G.</creatorcontrib><creatorcontrib>Hawkins, Troy</creatorcontrib><creatorcontrib>Gan, Yu</creatorcontrib><creatorcontrib>Wang, Michael</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential</title><title>Journal of industrial ecology</title><description>Global crude‐oil transportation contributes a significant portion of greenhouse gas (GHG) emissions in the marine transportation sector. In this work, we first compile a detailed country‐level global crude‐oil transportation network in 2018 and estimate that the direct and well‐to‐hull GHG emissions related to crude transportation were 97 and 109 million metric tons, respectively. Combining with the country‐specific crude recovery GHG intensities, the consumption‐based well‐to‐country‐gate crude‐oil GHG intensities are derived for individual countries, ranging from 2.99 to 27.32 g CO2eq/MJ, with a global crude‐volume‐weighted average of 8.67 g CO2eq/MJ. We then project the global crude transportation emissions at the regional level in 2050 under a static (no change) scenario (based on current ship energy efficiency) and a sustainable‐development (SD) scenario (based on the International Energy Agency's projections of ship energy efficiency and penetration of alternative marine fuels). Results show that the global well‐to‐hull GHG emissions related to crude transportation would be 82 and 59 million metric tons in 2050 in the static and SD scenarios, respectively. To further evaluate the impact of potential fuel‐switching on decarbonizing the crude oil transportation sector, we estimate the GHG emissions for 20 fuel/production options in 2050. We find that, in comparison to the static scenario, ∼50% reduction in global well‐to‐hull GHG emissions from crude transportation could be achieved under the SD scenario if green ammonia further replaces conventional ammonia. The methodology developed here can be applied to other commodities to estimate the emissions associated with their global marine transportation and to evaluate the potential emission mitigation options.</description><subject>Alternative fuels</subject><subject>Ammonia</subject><subject>Averages</subject><subject>Crude oil</subject><subject>Decarbonization</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Energy efficiency</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fuels</subject><subject>global transportation</subject><subject>greenhouse gas emissions</subject><subject>Greenhouse gases</subject><subject>industrial ecology</subject><subject>lifecycle analysis</subject><subject>Marine transportation</subject><subject>maritime transport</subject><subject>Mitigation</subject><subject>Oil</subject><subject>Penetration</subject><subject>Petroleum</subject><subject>Projections</subject><subject>Sustainable development</subject><subject>Transportation</subject><subject>Transportation industry</subject><subject>Transportation networks</subject><issn>1088-1980</issn><issn>1530-9290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kDFPwzAQhSMEEqWw8Ass2JBSbMdObDZUlVJUiQVmy3EvraskLrYj1H-PS5i55U73vns6vSy7JXhGUj3uLZgZKWhJz7IJ4QXOJZX4PM1YiJxIgS-zqxD2GJOipHiSdUsP0O_cEABtdUDQ2RCs6wNqvOtQ3KV162rdouh1Hw7ORx2TjlyDjB82gJxtn9B88B76iEJSh4B0v0GdjXY7sgcXk2h1e51dNLoNcPPXp9nny-Jj_pqv35er-fM6N0XJaF5XcsO55owwprkU0GghalMKqKWuBRNVhUnZ6MpQrllRyWYDjHPKGINCUFlMs7vR14VoVTA2gtkZ1_dgoiIyWRY0QfcjdPDua4AQ1d4Nvk9_KVpxwSlPASbqYaSMdyF4aNTB2077oyJYnTJXp8zVb-YJJiP8bVs4_kOqt9ViPt78AKulhHQ</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Ankathi, Sharath</creator><creator>Lu, Zifeng</creator><creator>Zaimes, George G.</creator><creator>Hawkins, Troy</creator><creator>Gan, Yu</creator><creator>Wang, Michael</creator><general>Wiley Subscription Services, Inc</general><general>Wiley - Yale University</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8289-0945</orcidid><orcidid>https://orcid.org/0000-0001-7331-5861</orcidid><orcidid>https://orcid.org/0000000282890945</orcidid><orcidid>https://orcid.org/0000000173315861</orcidid></search><sort><creationdate>202212</creationdate><title>Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential</title><author>Ankathi, Sharath ; Lu, Zifeng ; Zaimes, George G. ; Hawkins, Troy ; Gan, Yu ; Wang, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3642-b79d55a54144a598efa88bc68eb9ab84877016fa7c25a4379fde4552444e38293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative fuels</topic><topic>Ammonia</topic><topic>Averages</topic><topic>Crude oil</topic><topic>Decarbonization</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Energy efficiency</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fuels</topic><topic>global transportation</topic><topic>greenhouse gas emissions</topic><topic>Greenhouse gases</topic><topic>industrial ecology</topic><topic>lifecycle analysis</topic><topic>Marine transportation</topic><topic>maritime transport</topic><topic>Mitigation</topic><topic>Oil</topic><topic>Penetration</topic><topic>Petroleum</topic><topic>Projections</topic><topic>Sustainable development</topic><topic>Transportation</topic><topic>Transportation industry</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ankathi, Sharath</creatorcontrib><creatorcontrib>Lu, Zifeng</creatorcontrib><creatorcontrib>Zaimes, George G.</creatorcontrib><creatorcontrib>Hawkins, Troy</creatorcontrib><creatorcontrib>Gan, Yu</creatorcontrib><creatorcontrib>Wang, Michael</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of industrial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ankathi, Sharath</au><au>Lu, Zifeng</au><au>Zaimes, George G.</au><au>Hawkins, Troy</au><au>Gan, Yu</au><au>Wang, Michael</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential</atitle><jtitle>Journal of industrial ecology</jtitle><date>2022-12</date><risdate>2022</risdate><volume>26</volume><issue>6</issue><spage>2045</spage><epage>2056</epage><pages>2045-2056</pages><issn>1088-1980</issn><eissn>1530-9290</eissn><abstract>Global crude‐oil transportation contributes a significant portion of greenhouse gas (GHG) emissions in the marine transportation sector. In this work, we first compile a detailed country‐level global crude‐oil transportation network in 2018 and estimate that the direct and well‐to‐hull GHG emissions related to crude transportation were 97 and 109 million metric tons, respectively. Combining with the country‐specific crude recovery GHG intensities, the consumption‐based well‐to‐country‐gate crude‐oil GHG intensities are derived for individual countries, ranging from 2.99 to 27.32 g CO2eq/MJ, with a global crude‐volume‐weighted average of 8.67 g CO2eq/MJ. We then project the global crude transportation emissions at the regional level in 2050 under a static (no change) scenario (based on current ship energy efficiency) and a sustainable‐development (SD) scenario (based on the International Energy Agency's projections of ship energy efficiency and penetration of alternative marine fuels). Results show that the global well‐to‐hull GHG emissions related to crude transportation would be 82 and 59 million metric tons in 2050 in the static and SD scenarios, respectively. To further evaluate the impact of potential fuel‐switching on decarbonizing the crude oil transportation sector, we estimate the GHG emissions for 20 fuel/production options in 2050. We find that, in comparison to the static scenario, ∼50% reduction in global well‐to‐hull GHG emissions from crude transportation could be achieved under the SD scenario if green ammonia further replaces conventional ammonia. The methodology developed here can be applied to other commodities to estimate the emissions associated with their global marine transportation and to evaluate the potential emission mitigation options.</abstract><cop>New Haven</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jiec.13262</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8289-0945</orcidid><orcidid>https://orcid.org/0000-0001-7331-5861</orcidid><orcidid>https://orcid.org/0000000282890945</orcidid><orcidid>https://orcid.org/0000000173315861</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-1980
ispartof Journal of industrial ecology, 2022-12, Vol.26 (6), p.2045-2056
issn 1088-1980
1530-9290
language eng
recordid cdi_osti_scitechconnect_1959832
source Wiley Online Library All Journals
subjects Alternative fuels
Ammonia
Averages
Crude oil
Decarbonization
Emission analysis
Emissions
Energy efficiency
ENVIRONMENTAL SCIENCES
Fuels
global transportation
greenhouse gas emissions
Greenhouse gases
industrial ecology
lifecycle analysis
Marine transportation
maritime transport
Mitigation
Oil
Penetration
Petroleum
Projections
Sustainable development
Transportation
Transportation industry
Transportation networks
title Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greenhouse%20gas%20emissions%20from%20the%20global%20transportation%20of%20crude%20oil:%20Current%20status%20and%20mitigation%20potential&rft.jtitle=Journal%20of%20industrial%20ecology&rft.au=Ankathi,%20Sharath&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-12&rft.volume=26&rft.issue=6&rft.spage=2045&rft.epage=2056&rft.pages=2045-2056&rft.issn=1088-1980&rft.eissn=1530-9290&rft_id=info:doi/10.1111/jiec.13262&rft_dat=%3Cproquest_osti_%3E2758525153%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758525153&rft_id=info:pmid/&rfr_iscdi=true