Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive

Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-04, Vol.19 (15), p.e2207092-n/a
Hauptverfasser: Yin, Yifan, Zhou, Yuchen, Fu, Shi, Zuo, Xianghao, Lin, Yu‐Chung, Wang, Likun, Xue, Yuan, Zhang, Yugang, Tsai, Esther H. R., Hwang, Sooyeon, Kissenger, Kim, Li, Mingxing, Cotlet, Mircea, Li, Tai‐De, Yager, Kevin G., Nam, Chang‐Yong, Rafailovich, Miriam H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page e2207092
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Yin, Yifan
Zhou, Yuchen
Fu, Shi
Zuo, Xianghao
Lin, Yu‐Chung
Wang, Likun
Xue, Yuan
Zhang, Yugang
Tsai, Esther H. R.
Hwang, Sooyeon
Kissenger, Kim
Li, Mingxing
Cotlet, Mircea
Li, Tai‐De
Yager, Kevin G.
Nam, Chang‐Yong
Rafailovich, Miriam H.
description Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet additives incorporated into the active perovskite layer are demonstrated. In situ X‐ray scattering and infrared thermal imaging during the perovskite annealing process revealed the highly thermally conductive hBN nanosheets promoted the phase conversion and grain growth in the perovskite layer by facilitating a more rapid and spatially uniform temperature rise within the perovskite film. Complementary structural, physicochemical, and electrical characterizations further showed that the hBN nanosheets formed a physical barrier at the perovskite grain boundaries and the interfaces with charge transport layers, passivating defects, and retarding ion migration. As a result, the power conversion efficiency of the PSC is improved from 17.4% to 19.8%, along with enhanced device stability, retaining ≈90% of the initial efficiency even after 500 h ambient air storage. The results not only highlight 2D hBN as an effective additive for PSCs but also suggest enhanced thermal transport as one of the pathways for improved PSC performance by 2D material additives in general. In situ synchrotron X‐ray scattering and real‐time thermal imaging for the first time unraveled the effects of the thermally conductive additive, hexagonal boron nitride nanosheets, on enhancing the crystallization kinetics in organic‐inorganic hybrid perovskites and the associated solar cell performance and stability.
doi_str_mv 10.1002/smll.202207092
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1958563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765073221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4402-770bdb33aaba21895e9bb1e917b391adcb65cada5ade72cd6303c838b80f289d3</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS1ERUtgyxJZsGGT4EfGM16WoaWVQkFqu7b8CnHx2K3tKZr-ehylTSU2rO5dfOeTjg4A7zBaYITI5zx4vyCIENQiTl6AI8wwnbOO8Jf7H6ND8DrnG4QoJsv2FTikjNW3o0dgOgkbGbQLv2Cfplyk9-5BFhcDdAGeTSo5A3_aFO_zb1csvIxeJthb7zO8ztvY1camocYm2MdgRl3cvYXkK_wSU5VcuFINFl7IEPPG2gKPjXFb5g04WEuf7dvHOwPXpydX_dl89ePbeX-8muvlEpF52yJlFKVSKklwxxvLlcKW41ZRjqXRijVaGtlIY1uiDaOI6o52qkNr0nFDZ-DDzhtzcSLr2kJvdAzB6iIwb7qG0Qp92kG3Kd6NNhcxuKxrSxlsHLMgLWtQSwnBFf34D3oTxxRqhUpxzmnHqnEGFjtKp5hzsmtxm9wg0yQwEtvlxHY5sV-uBt4_akc1WLPHn6aqAN8Bf5y303904vL7avUs_wu6xKYS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799938656</pqid></control><display><type>article</type><title>Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive</title><source>Wiley Online Library</source><creator>Yin, Yifan ; Zhou, Yuchen ; Fu, Shi ; Zuo, Xianghao ; Lin, Yu‐Chung ; Wang, Likun ; Xue, Yuan ; Zhang, Yugang ; Tsai, Esther H. R. ; Hwang, Sooyeon ; Kissenger, Kim ; Li, Mingxing ; Cotlet, Mircea ; Li, Tai‐De ; Yager, Kevin G. ; Nam, Chang‐Yong ; Rafailovich, Miriam H.</creator><creatorcontrib>Yin, Yifan ; Zhou, Yuchen ; Fu, Shi ; Zuo, Xianghao ; Lin, Yu‐Chung ; Wang, Likun ; Xue, Yuan ; Zhang, Yugang ; Tsai, Esther H. R. ; Hwang, Sooyeon ; Kissenger, Kim ; Li, Mingxing ; Cotlet, Mircea ; Li, Tai‐De ; Yager, Kevin G. ; Nam, Chang‐Yong ; Rafailovich, Miriam H. ; Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><description>Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet additives incorporated into the active perovskite layer are demonstrated. In situ X‐ray scattering and infrared thermal imaging during the perovskite annealing process revealed the highly thermally conductive hBN nanosheets promoted the phase conversion and grain growth in the perovskite layer by facilitating a more rapid and spatially uniform temperature rise within the perovskite film. Complementary structural, physicochemical, and electrical characterizations further showed that the hBN nanosheets formed a physical barrier at the perovskite grain boundaries and the interfaces with charge transport layers, passivating defects, and retarding ion migration. As a result, the power conversion efficiency of the PSC is improved from 17.4% to 19.8%, along with enhanced device stability, retaining ≈90% of the initial efficiency even after 500 h ambient air storage. The results not only highlight 2D hBN as an effective additive for PSCs but also suggest enhanced thermal transport as one of the pathways for improved PSC performance by 2D material additives in general. In situ synchrotron X‐ray scattering and real‐time thermal imaging for the first time unraveled the effects of the thermally conductive additive, hexagonal boron nitride nanosheets, on enhancing the crystallization kinetics in organic‐inorganic hybrid perovskites and the associated solar cell performance and stability.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207092</identifier><identifier>PMID: 36631283</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Additives ; Barriers ; Boron nitride ; Charge transport ; Crystal defects ; Crystallization ; Energy conversion efficiency ; Grain boundaries ; Grain growth ; grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) ; hybrid perovskite solar cells ; Infrared imaging ; Ion migration ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanosheets ; Nanotechnology ; Perovskites ; Photovoltaic cells ; Solar cells ; Stability ; Thermal imaging ; Two dimensional materials</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-04, Vol.19 (15), p.e2207092-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4402-770bdb33aaba21895e9bb1e917b391adcb65cada5ade72cd6303c838b80f289d3</citedby><cites>FETCH-LOGICAL-c4402-770bdb33aaba21895e9bb1e917b391adcb65cada5ade72cd6303c838b80f289d3</cites><orcidid>0000-0002-9093-4063 ; 0000000278321475 ; 0000000290934063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202207092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202207092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36631283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1958563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Yifan</creatorcontrib><creatorcontrib>Zhou, Yuchen</creatorcontrib><creatorcontrib>Fu, Shi</creatorcontrib><creatorcontrib>Zuo, Xianghao</creatorcontrib><creatorcontrib>Lin, Yu‐Chung</creatorcontrib><creatorcontrib>Wang, Likun</creatorcontrib><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Zhang, Yugang</creatorcontrib><creatorcontrib>Tsai, Esther H. R.</creatorcontrib><creatorcontrib>Hwang, Sooyeon</creatorcontrib><creatorcontrib>Kissenger, Kim</creatorcontrib><creatorcontrib>Li, Mingxing</creatorcontrib><creatorcontrib>Cotlet, Mircea</creatorcontrib><creatorcontrib>Li, Tai‐De</creatorcontrib><creatorcontrib>Yager, Kevin G.</creatorcontrib><creatorcontrib>Nam, Chang‐Yong</creatorcontrib><creatorcontrib>Rafailovich, Miriam H.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><title>Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet additives incorporated into the active perovskite layer are demonstrated. In situ X‐ray scattering and infrared thermal imaging during the perovskite annealing process revealed the highly thermally conductive hBN nanosheets promoted the phase conversion and grain growth in the perovskite layer by facilitating a more rapid and spatially uniform temperature rise within the perovskite film. Complementary structural, physicochemical, and electrical characterizations further showed that the hBN nanosheets formed a physical barrier at the perovskite grain boundaries and the interfaces with charge transport layers, passivating defects, and retarding ion migration. As a result, the power conversion efficiency of the PSC is improved from 17.4% to 19.8%, along with enhanced device stability, retaining ≈90% of the initial efficiency even after 500 h ambient air storage. The results not only highlight 2D hBN as an effective additive for PSCs but also suggest enhanced thermal transport as one of the pathways for improved PSC performance by 2D material additives in general. In situ synchrotron X‐ray scattering and real‐time thermal imaging for the first time unraveled the effects of the thermally conductive additive, hexagonal boron nitride nanosheets, on enhancing the crystallization kinetics in organic‐inorganic hybrid perovskites and the associated solar cell performance and stability.</description><subject>2D materials</subject><subject>Additives</subject><subject>Barriers</subject><subject>Boron nitride</subject><subject>Charge transport</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Energy conversion efficiency</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>grazing‐incidence wide‐angle X‐ray scattering (GIWAXS)</subject><subject>hybrid perovskite solar cells</subject><subject>Infrared imaging</subject><subject>Ion migration</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Thermal imaging</subject><subject>Two dimensional materials</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEUhS1ERUtgyxJZsGGT4EfGM16WoaWVQkFqu7b8CnHx2K3tKZr-ehylTSU2rO5dfOeTjg4A7zBaYITI5zx4vyCIENQiTl6AI8wwnbOO8Jf7H6ND8DrnG4QoJsv2FTikjNW3o0dgOgkbGbQLv2Cfplyk9-5BFhcDdAGeTSo5A3_aFO_zb1csvIxeJthb7zO8ztvY1camocYm2MdgRl3cvYXkK_wSU5VcuFINFl7IEPPG2gKPjXFb5g04WEuf7dvHOwPXpydX_dl89ePbeX-8muvlEpF52yJlFKVSKklwxxvLlcKW41ZRjqXRijVaGtlIY1uiDaOI6o52qkNr0nFDZ-DDzhtzcSLr2kJvdAzB6iIwb7qG0Qp92kG3Kd6NNhcxuKxrSxlsHLMgLWtQSwnBFf34D3oTxxRqhUpxzmnHqnEGFjtKp5hzsmtxm9wg0yQwEtvlxHY5sV-uBt4_akc1WLPHn6aqAN8Bf5y303904vL7avUs_wu6xKYS</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yin, Yifan</creator><creator>Zhou, Yuchen</creator><creator>Fu, Shi</creator><creator>Zuo, Xianghao</creator><creator>Lin, Yu‐Chung</creator><creator>Wang, Likun</creator><creator>Xue, Yuan</creator><creator>Zhang, Yugang</creator><creator>Tsai, Esther H. R.</creator><creator>Hwang, Sooyeon</creator><creator>Kissenger, Kim</creator><creator>Li, Mingxing</creator><creator>Cotlet, Mircea</creator><creator>Li, Tai‐De</creator><creator>Yager, Kevin G.</creator><creator>Nam, Chang‐Yong</creator><creator>Rafailovich, Miriam H.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9093-4063</orcidid><orcidid>https://orcid.org/0000000278321475</orcidid><orcidid>https://orcid.org/0000000290934063</orcidid></search><sort><creationdate>20230401</creationdate><title>Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive</title><author>Yin, Yifan ; Zhou, Yuchen ; Fu, Shi ; Zuo, Xianghao ; Lin, Yu‐Chung ; Wang, Likun ; Xue, Yuan ; Zhang, Yugang ; Tsai, Esther H. R. ; Hwang, Sooyeon ; Kissenger, Kim ; Li, Mingxing ; Cotlet, Mircea ; Li, Tai‐De ; Yager, Kevin G. ; Nam, Chang‐Yong ; Rafailovich, Miriam H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4402-770bdb33aaba21895e9bb1e917b391adcb65cada5ade72cd6303c838b80f289d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D materials</topic><topic>Additives</topic><topic>Barriers</topic><topic>Boron nitride</topic><topic>Charge transport</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Energy conversion efficiency</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>grazing‐incidence wide‐angle X‐ray scattering (GIWAXS)</topic><topic>hybrid perovskite solar cells</topic><topic>Infrared imaging</topic><topic>Ion migration</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Thermal imaging</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Yifan</creatorcontrib><creatorcontrib>Zhou, Yuchen</creatorcontrib><creatorcontrib>Fu, Shi</creatorcontrib><creatorcontrib>Zuo, Xianghao</creatorcontrib><creatorcontrib>Lin, Yu‐Chung</creatorcontrib><creatorcontrib>Wang, Likun</creatorcontrib><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Zhang, Yugang</creatorcontrib><creatorcontrib>Tsai, Esther H. R.</creatorcontrib><creatorcontrib>Hwang, Sooyeon</creatorcontrib><creatorcontrib>Kissenger, Kim</creatorcontrib><creatorcontrib>Li, Mingxing</creatorcontrib><creatorcontrib>Cotlet, Mircea</creatorcontrib><creatorcontrib>Li, Tai‐De</creatorcontrib><creatorcontrib>Yager, Kevin G.</creatorcontrib><creatorcontrib>Nam, Chang‐Yong</creatorcontrib><creatorcontrib>Rafailovich, Miriam H.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Yifan</au><au>Zhou, Yuchen</au><au>Fu, Shi</au><au>Zuo, Xianghao</au><au>Lin, Yu‐Chung</au><au>Wang, Likun</au><au>Xue, Yuan</au><au>Zhang, Yugang</au><au>Tsai, Esther H. R.</au><au>Hwang, Sooyeon</au><au>Kissenger, Kim</au><au>Li, Mingxing</au><au>Cotlet, Mircea</au><au>Li, Tai‐De</au><au>Yager, Kevin G.</au><au>Nam, Chang‐Yong</au><au>Rafailovich, Miriam H.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>19</volume><issue>15</issue><spage>e2207092</spage><epage>n/a</epage><pages>e2207092-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet additives incorporated into the active perovskite layer are demonstrated. In situ X‐ray scattering and infrared thermal imaging during the perovskite annealing process revealed the highly thermally conductive hBN nanosheets promoted the phase conversion and grain growth in the perovskite layer by facilitating a more rapid and spatially uniform temperature rise within the perovskite film. Complementary structural, physicochemical, and electrical characterizations further showed that the hBN nanosheets formed a physical barrier at the perovskite grain boundaries and the interfaces with charge transport layers, passivating defects, and retarding ion migration. As a result, the power conversion efficiency of the PSC is improved from 17.4% to 19.8%, along with enhanced device stability, retaining ≈90% of the initial efficiency even after 500 h ambient air storage. The results not only highlight 2D hBN as an effective additive for PSCs but also suggest enhanced thermal transport as one of the pathways for improved PSC performance by 2D material additives in general. In situ synchrotron X‐ray scattering and real‐time thermal imaging for the first time unraveled the effects of the thermally conductive additive, hexagonal boron nitride nanosheets, on enhancing the crystallization kinetics in organic‐inorganic hybrid perovskites and the associated solar cell performance and stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36631283</pmid><doi>10.1002/smll.202207092</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9093-4063</orcidid><orcidid>https://orcid.org/0000000278321475</orcidid><orcidid>https://orcid.org/0000000290934063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-04, Vol.19 (15), p.e2207092-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_osti_scitechconnect_1958563
source Wiley Online Library
subjects 2D materials
Additives
Barriers
Boron nitride
Charge transport
Crystal defects
Crystallization
Energy conversion efficiency
Grain boundaries
Grain growth
grazing‐incidence wide‐angle X‐ray scattering (GIWAXS)
hybrid perovskite solar cells
Infrared imaging
Ion migration
NANOSCIENCE AND NANOTECHNOLOGY
Nanosheets
Nanotechnology
Perovskites
Photovoltaic cells
Solar cells
Stability
Thermal imaging
Two dimensional materials
title Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Crystallization%20in%20Hybrid%20Perovskite%20Solar%20Cells%20Using%20Thermally%20Conductive%202D%20Boron%20Nitride%20Nanosheet%20Additive&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yin,%20Yifan&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2023-04-01&rft.volume=19&rft.issue=15&rft.spage=e2207092&rft.epage=n/a&rft.pages=e2207092-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207092&rft_dat=%3Cproquest_osti_%3E2765073221%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799938656&rft_id=info:pmid/36631283&rfr_iscdi=true