Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends
Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar ce...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2023-03, Vol.16 (3), p.1234-1250 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250 |
---|---|
container_issue | 3 |
container_start_page | 1234 |
container_title | Energy & environmental science |
container_volume | 16 |
creator | Zhu, Weigang Li, Guoping Mukherjee, Subhrangsu Powers-Riggs, Natalia E. Jones, Leighton O. Gann, Eliot Kline, R. Joseph Herzing, Andrew Logsdon, Jenna L. Flagg, Lucas Stern, Charlotte L. Young, Ryan M. Kohlstedt, Kevin L. Schatz, George C. DeLongchamp, Dean M. Wasielewski, Michael R. Melkonyan, Ferdinand S. Facchetti, Antonio Marks, Tobin J. |
description | Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar cell performance have stimulated many studies of polymer solar cells (PSCs), yet quantitative relationships remain limited. Better understanding in these areas offers the potential to advance materials design and device engineering, afford higher PCEs, and ultimate commercialization. Here we probe quantitative relationships between BHJ film morphology, charge carrier dynamics, and photovoltaic performance in model binary and ternary blend systems having a wide bandgap donor polymer, a fullerene, and a promising NFA. We show that optimal PC71BM incorporation in a PBDB-TF:ITIC-Th binary system matrix retains the original π-face-on orientation, ITIC-Th crystallinity and BHJ film crystallite dimensions, and reduces film upper surface ITIC-Th segregation. Such morphology changes together simultaneously increase hole (
μ
h
) and electron (
μ
e
) mobilities, facilitate light-activated ITIC-Th to PC71BM domain electron delocalization, reduce free charge carrier (FC) bimolecular recombination (BR) within PBDB-TF:ITIC-Th mixed regions, and increase FC extraction pathways
via
PBDB-TF:PC71BM pairs. The interplay of these effects yields significantly enhanced inverted cell short-circuit current density (
J
SC
), fill factor (FF), and PCE. Unexpectedly, we also find that excessive PC71BM in the PBDB-TF:ITIC-Th binary system alters the PBDB-TF orientation to π-edge-on, increases large scale PC71BM-rich aggregations and BHJ upper surface PC71BM composition. These morphology changes increase parasitic decay processes such as intersystem crossing from photoexcited PC71BM, compromising the
J
SC
, FF, and PCE metrics. ITIC-Th X-ray diffraction reveals a unique sidechain-dominated molecular network with previously unknown sidechain-end group stacking, rationalizing the STEM and GIWAXS results, photophysics, and the high
μ
e
. DFT computation reveals charge transfer networks within ITIC-Th crystallites, supporting excited-state electron delocalization from ITIC-Th to PC71BM. This structure–property understanding leads to a newly reported NFA blend with PCE near 17%. |
doi_str_mv | 10.1039/D2EE03883H |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1957848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786899157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-d8d180a1da131f8a9c5408fbaf935f5c5bda8e7aad4491d578f5aef00e7a13603</originalsourceid><addsrcrecordid>eNpFkc1O3DAUhSNUpFLKpk9gtbuKUDuJE3tZwbRUQkKVyjq6sa-Jh8QOtjNonocXrelQsbpHR9_90ymKT4xeMFrLb1fVZkNrIerro-KEdbwpeUfbd_91K6v3xYcYt5S2Fe3kSfH8ewWXbIJkd0gCTll4F0e7RDJgekJ0xNhpJrMPy-gnf78_J2qEcI9EQQgWA9F7B7NV8ZyA0yRTye_8lMAqsmAwPszgFBLryLBOD-WICYPfrk69rCKDdRD2ZBcvSPb_aVAKl-QDGSZ0On4sjg1MEc9e62lx92Pz5_K6vLn9-evy-02pKtGmUgvNBAWmgdXMCJCKN1SYAYysueGKDxoEdgC6aSTTvBOGAxpKs8fqltanxefDXB-T7aOyCdWovHOoUs9kbmhEhr4coCX4xxVj6rd-zWdPsa860QopGe8y9fVAqeBjDGj6Jdg5_9Yz2r8k1b8lVf8FvhiK4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786899157</pqid></control><display><type>article</type><title>Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhu, Weigang ; Li, Guoping ; Mukherjee, Subhrangsu ; Powers-Riggs, Natalia E. ; Jones, Leighton O. ; Gann, Eliot ; Kline, R. Joseph ; Herzing, Andrew ; Logsdon, Jenna L. ; Flagg, Lucas ; Stern, Charlotte L. ; Young, Ryan M. ; Kohlstedt, Kevin L. ; Schatz, George C. ; DeLongchamp, Dean M. ; Wasielewski, Michael R. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</creator><creatorcontrib>Zhu, Weigang ; Li, Guoping ; Mukherjee, Subhrangsu ; Powers-Riggs, Natalia E. ; Jones, Leighton O. ; Gann, Eliot ; Kline, R. Joseph ; Herzing, Andrew ; Logsdon, Jenna L. ; Flagg, Lucas ; Stern, Charlotte L. ; Young, Ryan M. ; Kohlstedt, Kevin L. ; Schatz, George C. ; DeLongchamp, Dean M. ; Wasielewski, Michael R. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</creatorcontrib><description>Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar cell performance have stimulated many studies of polymer solar cells (PSCs), yet quantitative relationships remain limited. Better understanding in these areas offers the potential to advance materials design and device engineering, afford higher PCEs, and ultimate commercialization. Here we probe quantitative relationships between BHJ film morphology, charge carrier dynamics, and photovoltaic performance in model binary and ternary blend systems having a wide bandgap donor polymer, a fullerene, and a promising NFA. We show that optimal PC71BM incorporation in a PBDB-TF:ITIC-Th binary system matrix retains the original π-face-on orientation, ITIC-Th crystallinity and BHJ film crystallite dimensions, and reduces film upper surface ITIC-Th segregation. Such morphology changes together simultaneously increase hole (
μ
h
) and electron (
μ
e
) mobilities, facilitate light-activated ITIC-Th to PC71BM domain electron delocalization, reduce free charge carrier (FC) bimolecular recombination (BR) within PBDB-TF:ITIC-Th mixed regions, and increase FC extraction pathways
via
PBDB-TF:PC71BM pairs. The interplay of these effects yields significantly enhanced inverted cell short-circuit current density (
J
SC
), fill factor (FF), and PCE. Unexpectedly, we also find that excessive PC71BM in the PBDB-TF:ITIC-Th binary system alters the PBDB-TF orientation to π-edge-on, increases large scale PC71BM-rich aggregations and BHJ upper surface PC71BM composition. These morphology changes increase parasitic decay processes such as intersystem crossing from photoexcited PC71BM, compromising the
J
SC
, FF, and PCE metrics. ITIC-Th X-ray diffraction reveals a unique sidechain-dominated molecular network with previously unknown sidechain-end group stacking, rationalizing the STEM and GIWAXS results, photophysics, and the high
μ
e
. DFT computation reveals charge transfer networks within ITIC-Th crystallites, supporting excited-state electron delocalization from ITIC-Th to PC71BM. This structure–property understanding leads to a newly reported NFA blend with PCE near 17%.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D2EE03883H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Binary system ; Carrier recombination ; Charge transfer ; Circuits ; Commercialization ; Crystallites ; Crystals ; Current carriers ; Cytology ; Energy conversion efficiency ; Fullerenes ; Heterojunctions ; Morphology ; Photovoltaic cells ; Photovoltaics ; Polymers ; Recombination ; Short circuit currents ; Short-circuit current ; Solar cells ; X-ray diffraction</subject><ispartof>Energy & environmental science, 2023-03, Vol.16 (3), p.1234-1250</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-d8d180a1da131f8a9c5408fbaf935f5c5bda8e7aad4491d578f5aef00e7a13603</citedby><cites>FETCH-LOGICAL-c286t-d8d180a1da131f8a9c5408fbaf935f5c5bda8e7aad4491d578f5aef00e7a13603</cites><orcidid>0000-0002-9309-9622 ; 0000-0003-4693-9083 ; 0000-0002-5888-4481 ; 0000-0001-5570-8880 ; 0000-0002-5108-0261 ; 0000-0002-8193-9639 ; 0000-0003-2920-5440 ; 0000-0001-8228-9247 ; 0000-0003-0840-0757 ; 0000-0001-8045-0930 ; 0000-0001-6657-2632 ; 0000-0001-5944-2610 ; 0000-0001-5837-4740 ; 0000-0002-5479-3750 ; 0000-0002-8175-7958 ; 0000-0002-2798-5650 ; 0000-0003-2000-3770 ; 0000-0002-9491-289X ; 0000-0001-8771-0141 ; 0000000293099622 ; 0000000258884481 ; 0000000251080261 ; 0000000227985650 ; 0000000182289247 ; 0000000155708880 ; 0000000166572632 ; 0000000281757958 ; 0000000187710141 ; 0000000159442610 ; 0000000281939639 ; 0000000158374740 ; 0000000254793750 ; 0000000329205440 ; 0000000308400757 ; 0000000346939083 ; 0000000180450930 ; 000000029491289X ; 0000000320003770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1957848$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Weigang</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Mukherjee, Subhrangsu</creatorcontrib><creatorcontrib>Powers-Riggs, Natalia E.</creatorcontrib><creatorcontrib>Jones, Leighton O.</creatorcontrib><creatorcontrib>Gann, Eliot</creatorcontrib><creatorcontrib>Kline, R. Joseph</creatorcontrib><creatorcontrib>Herzing, Andrew</creatorcontrib><creatorcontrib>Logsdon, Jenna L.</creatorcontrib><creatorcontrib>Flagg, Lucas</creatorcontrib><creatorcontrib>Stern, Charlotte L.</creatorcontrib><creatorcontrib>Young, Ryan M.</creatorcontrib><creatorcontrib>Kohlstedt, Kevin L.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>DeLongchamp, Dean M.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><title>Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends</title><title>Energy & environmental science</title><description>Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar cell performance have stimulated many studies of polymer solar cells (PSCs), yet quantitative relationships remain limited. Better understanding in these areas offers the potential to advance materials design and device engineering, afford higher PCEs, and ultimate commercialization. Here we probe quantitative relationships between BHJ film morphology, charge carrier dynamics, and photovoltaic performance in model binary and ternary blend systems having a wide bandgap donor polymer, a fullerene, and a promising NFA. We show that optimal PC71BM incorporation in a PBDB-TF:ITIC-Th binary system matrix retains the original π-face-on orientation, ITIC-Th crystallinity and BHJ film crystallite dimensions, and reduces film upper surface ITIC-Th segregation. Such morphology changes together simultaneously increase hole (
μ
h
) and electron (
μ
e
) mobilities, facilitate light-activated ITIC-Th to PC71BM domain electron delocalization, reduce free charge carrier (FC) bimolecular recombination (BR) within PBDB-TF:ITIC-Th mixed regions, and increase FC extraction pathways
via
PBDB-TF:PC71BM pairs. The interplay of these effects yields significantly enhanced inverted cell short-circuit current density (
J
SC
), fill factor (FF), and PCE. Unexpectedly, we also find that excessive PC71BM in the PBDB-TF:ITIC-Th binary system alters the PBDB-TF orientation to π-edge-on, increases large scale PC71BM-rich aggregations and BHJ upper surface PC71BM composition. These morphology changes increase parasitic decay processes such as intersystem crossing from photoexcited PC71BM, compromising the
J
SC
, FF, and PCE metrics. ITIC-Th X-ray diffraction reveals a unique sidechain-dominated molecular network with previously unknown sidechain-end group stacking, rationalizing the STEM and GIWAXS results, photophysics, and the high
μ
e
. DFT computation reveals charge transfer networks within ITIC-Th crystallites, supporting excited-state electron delocalization from ITIC-Th to PC71BM. This structure–property understanding leads to a newly reported NFA blend with PCE near 17%.</description><subject>Binary system</subject><subject>Carrier recombination</subject><subject>Charge transfer</subject><subject>Circuits</subject><subject>Commercialization</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Cytology</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>Morphology</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Polymers</subject><subject>Recombination</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>X-ray diffraction</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkc1O3DAUhSNUpFLKpk9gtbuKUDuJE3tZwbRUQkKVyjq6sa-Jh8QOtjNonocXrelQsbpHR9_90ymKT4xeMFrLb1fVZkNrIerro-KEdbwpeUfbd_91K6v3xYcYt5S2Fe3kSfH8ewWXbIJkd0gCTll4F0e7RDJgekJ0xNhpJrMPy-gnf78_J2qEcI9EQQgWA9F7B7NV8ZyA0yRTye_8lMAqsmAwPszgFBLryLBOD-WICYPfrk69rCKDdRD2ZBcvSPb_aVAKl-QDGSZ0On4sjg1MEc9e62lx92Pz5_K6vLn9-evy-02pKtGmUgvNBAWmgdXMCJCKN1SYAYysueGKDxoEdgC6aSTTvBOGAxpKs8fqltanxefDXB-T7aOyCdWovHOoUs9kbmhEhr4coCX4xxVj6rd-zWdPsa860QopGe8y9fVAqeBjDGj6Jdg5_9Yz2r8k1b8lVf8FvhiK4g</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Zhu, Weigang</creator><creator>Li, Guoping</creator><creator>Mukherjee, Subhrangsu</creator><creator>Powers-Riggs, Natalia E.</creator><creator>Jones, Leighton O.</creator><creator>Gann, Eliot</creator><creator>Kline, R. Joseph</creator><creator>Herzing, Andrew</creator><creator>Logsdon, Jenna L.</creator><creator>Flagg, Lucas</creator><creator>Stern, Charlotte L.</creator><creator>Young, Ryan M.</creator><creator>Kohlstedt, Kevin L.</creator><creator>Schatz, George C.</creator><creator>DeLongchamp, Dean M.</creator><creator>Wasielewski, Michael R.</creator><creator>Melkonyan, Ferdinand S.</creator><creator>Facchetti, Antonio</creator><creator>Marks, Tobin J.</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9309-9622</orcidid><orcidid>https://orcid.org/0000-0003-4693-9083</orcidid><orcidid>https://orcid.org/0000-0002-5888-4481</orcidid><orcidid>https://orcid.org/0000-0001-5570-8880</orcidid><orcidid>https://orcid.org/0000-0002-5108-0261</orcidid><orcidid>https://orcid.org/0000-0002-8193-9639</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000-0001-8228-9247</orcidid><orcidid>https://orcid.org/0000-0003-0840-0757</orcidid><orcidid>https://orcid.org/0000-0001-8045-0930</orcidid><orcidid>https://orcid.org/0000-0001-6657-2632</orcidid><orcidid>https://orcid.org/0000-0001-5944-2610</orcidid><orcidid>https://orcid.org/0000-0001-5837-4740</orcidid><orcidid>https://orcid.org/0000-0002-5479-3750</orcidid><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0002-2798-5650</orcidid><orcidid>https://orcid.org/0000-0003-2000-3770</orcidid><orcidid>https://orcid.org/0000-0002-9491-289X</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000000293099622</orcidid><orcidid>https://orcid.org/0000000258884481</orcidid><orcidid>https://orcid.org/0000000251080261</orcidid><orcidid>https://orcid.org/0000000227985650</orcidid><orcidid>https://orcid.org/0000000182289247</orcidid><orcidid>https://orcid.org/0000000155708880</orcidid><orcidid>https://orcid.org/0000000166572632</orcidid><orcidid>https://orcid.org/0000000281757958</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid><orcidid>https://orcid.org/0000000159442610</orcidid><orcidid>https://orcid.org/0000000281939639</orcidid><orcidid>https://orcid.org/0000000158374740</orcidid><orcidid>https://orcid.org/0000000254793750</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000308400757</orcidid><orcidid>https://orcid.org/0000000346939083</orcidid><orcidid>https://orcid.org/0000000180450930</orcidid><orcidid>https://orcid.org/000000029491289X</orcidid><orcidid>https://orcid.org/0000000320003770</orcidid></search><sort><creationdate>20230315</creationdate><title>Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends</title><author>Zhu, Weigang ; Li, Guoping ; Mukherjee, Subhrangsu ; Powers-Riggs, Natalia E. ; Jones, Leighton O. ; Gann, Eliot ; Kline, R. Joseph ; Herzing, Andrew ; Logsdon, Jenna L. ; Flagg, Lucas ; Stern, Charlotte L. ; Young, Ryan M. ; Kohlstedt, Kevin L. ; Schatz, George C. ; DeLongchamp, Dean M. ; Wasielewski, Michael R. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-d8d180a1da131f8a9c5408fbaf935f5c5bda8e7aad4491d578f5aef00e7a13603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binary system</topic><topic>Carrier recombination</topic><topic>Charge transfer</topic><topic>Circuits</topic><topic>Commercialization</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Cytology</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>Morphology</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Polymers</topic><topic>Recombination</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Weigang</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Mukherjee, Subhrangsu</creatorcontrib><creatorcontrib>Powers-Riggs, Natalia E.</creatorcontrib><creatorcontrib>Jones, Leighton O.</creatorcontrib><creatorcontrib>Gann, Eliot</creatorcontrib><creatorcontrib>Kline, R. Joseph</creatorcontrib><creatorcontrib>Herzing, Andrew</creatorcontrib><creatorcontrib>Logsdon, Jenna L.</creatorcontrib><creatorcontrib>Flagg, Lucas</creatorcontrib><creatorcontrib>Stern, Charlotte L.</creatorcontrib><creatorcontrib>Young, Ryan M.</creatorcontrib><creatorcontrib>Kohlstedt, Kevin L.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>DeLongchamp, Dean M.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Weigang</au><au>Li, Guoping</au><au>Mukherjee, Subhrangsu</au><au>Powers-Riggs, Natalia E.</au><au>Jones, Leighton O.</au><au>Gann, Eliot</au><au>Kline, R. Joseph</au><au>Herzing, Andrew</au><au>Logsdon, Jenna L.</au><au>Flagg, Lucas</au><au>Stern, Charlotte L.</au><au>Young, Ryan M.</au><au>Kohlstedt, Kevin L.</au><au>Schatz, George C.</au><au>DeLongchamp, Dean M.</au><au>Wasielewski, Michael R.</au><au>Melkonyan, Ferdinand S.</au><au>Facchetti, Antonio</au><au>Marks, Tobin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends</atitle><jtitle>Energy & environmental science</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1234</spage><epage>1250</epage><pages>1234-1250</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar cell performance have stimulated many studies of polymer solar cells (PSCs), yet quantitative relationships remain limited. Better understanding in these areas offers the potential to advance materials design and device engineering, afford higher PCEs, and ultimate commercialization. Here we probe quantitative relationships between BHJ film morphology, charge carrier dynamics, and photovoltaic performance in model binary and ternary blend systems having a wide bandgap donor polymer, a fullerene, and a promising NFA. We show that optimal PC71BM incorporation in a PBDB-TF:ITIC-Th binary system matrix retains the original π-face-on orientation, ITIC-Th crystallinity and BHJ film crystallite dimensions, and reduces film upper surface ITIC-Th segregation. Such morphology changes together simultaneously increase hole (
μ
h
) and electron (
μ
e
) mobilities, facilitate light-activated ITIC-Th to PC71BM domain electron delocalization, reduce free charge carrier (FC) bimolecular recombination (BR) within PBDB-TF:ITIC-Th mixed regions, and increase FC extraction pathways
via
PBDB-TF:PC71BM pairs. The interplay of these effects yields significantly enhanced inverted cell short-circuit current density (
J
SC
), fill factor (FF), and PCE. Unexpectedly, we also find that excessive PC71BM in the PBDB-TF:ITIC-Th binary system alters the PBDB-TF orientation to π-edge-on, increases large scale PC71BM-rich aggregations and BHJ upper surface PC71BM composition. These morphology changes increase parasitic decay processes such as intersystem crossing from photoexcited PC71BM, compromising the
J
SC
, FF, and PCE metrics. ITIC-Th X-ray diffraction reveals a unique sidechain-dominated molecular network with previously unknown sidechain-end group stacking, rationalizing the STEM and GIWAXS results, photophysics, and the high
μ
e
. DFT computation reveals charge transfer networks within ITIC-Th crystallites, supporting excited-state electron delocalization from ITIC-Th to PC71BM. This structure–property understanding leads to a newly reported NFA blend with PCE near 17%.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2EE03883H</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9309-9622</orcidid><orcidid>https://orcid.org/0000-0003-4693-9083</orcidid><orcidid>https://orcid.org/0000-0002-5888-4481</orcidid><orcidid>https://orcid.org/0000-0001-5570-8880</orcidid><orcidid>https://orcid.org/0000-0002-5108-0261</orcidid><orcidid>https://orcid.org/0000-0002-8193-9639</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000-0001-8228-9247</orcidid><orcidid>https://orcid.org/0000-0003-0840-0757</orcidid><orcidid>https://orcid.org/0000-0001-8045-0930</orcidid><orcidid>https://orcid.org/0000-0001-6657-2632</orcidid><orcidid>https://orcid.org/0000-0001-5944-2610</orcidid><orcidid>https://orcid.org/0000-0001-5837-4740</orcidid><orcidid>https://orcid.org/0000-0002-5479-3750</orcidid><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0002-2798-5650</orcidid><orcidid>https://orcid.org/0000-0003-2000-3770</orcidid><orcidid>https://orcid.org/0000-0002-9491-289X</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000000293099622</orcidid><orcidid>https://orcid.org/0000000258884481</orcidid><orcidid>https://orcid.org/0000000251080261</orcidid><orcidid>https://orcid.org/0000000227985650</orcidid><orcidid>https://orcid.org/0000000182289247</orcidid><orcidid>https://orcid.org/0000000155708880</orcidid><orcidid>https://orcid.org/0000000166572632</orcidid><orcidid>https://orcid.org/0000000281757958</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid><orcidid>https://orcid.org/0000000159442610</orcidid><orcidid>https://orcid.org/0000000281939639</orcidid><orcidid>https://orcid.org/0000000158374740</orcidid><orcidid>https://orcid.org/0000000254793750</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000308400757</orcidid><orcidid>https://orcid.org/0000000346939083</orcidid><orcidid>https://orcid.org/0000000180450930</orcidid><orcidid>https://orcid.org/000000029491289X</orcidid><orcidid>https://orcid.org/0000000320003770</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2023-03, Vol.16 (3), p.1234-1250 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1957848 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Binary system Carrier recombination Charge transfer Circuits Commercialization Crystallites Crystals Current carriers Cytology Energy conversion efficiency Fullerenes Heterojunctions Morphology Photovoltaic cells Photovoltaics Polymers Recombination Short circuit currents Short-circuit current Solar cells X-ray diffraction |
title | Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20relationships%20between%20film%20morphology,%20charge%20carrier%20dynamics,%20and%20photovoltaic%20performance%20in%20bulk-heterojunction%20binary%20vs.%20ternary%20acceptor%20blends&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhu,%20Weigang&rft.date=2023-03-15&rft.volume=16&rft.issue=3&rft.spage=1234&rft.epage=1250&rft.pages=1234-1250&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D2EE03883H&rft_dat=%3Cproquest_osti_%3E2786899157%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786899157&rft_id=info:pmid/&rfr_iscdi=true |