Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends

Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-03, Vol.16 (3), p.1234-1250
Hauptverfasser: Zhu, Weigang, Li, Guoping, Mukherjee, Subhrangsu, Powers-Riggs, Natalia E., Jones, Leighton O., Gann, Eliot, Kline, R. Joseph, Herzing, Andrew, Logsdon, Jenna L., Flagg, Lucas, Stern, Charlotte L., Young, Ryan M., Kohlstedt, Kevin L., Schatz, George C., DeLongchamp, Dean M., Wasielewski, Michael R., Melkonyan, Ferdinand S., Facchetti, Antonio, Marks, Tobin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 3
container_start_page 1234
container_title Energy & environmental science
container_volume 16
creator Zhu, Weigang
Li, Guoping
Mukherjee, Subhrangsu
Powers-Riggs, Natalia E.
Jones, Leighton O.
Gann, Eliot
Kline, R. Joseph
Herzing, Andrew
Logsdon, Jenna L.
Flagg, Lucas
Stern, Charlotte L.
Young, Ryan M.
Kohlstedt, Kevin L.
Schatz, George C.
DeLongchamp, Dean M.
Wasielewski, Michael R.
Melkonyan, Ferdinand S.
Facchetti, Antonio
Marks, Tobin J.
description Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar cell performance have stimulated many studies of polymer solar cells (PSCs), yet quantitative relationships remain limited. Better understanding in these areas offers the potential to advance materials design and device engineering, afford higher PCEs, and ultimate commercialization. Here we probe quantitative relationships between BHJ film morphology, charge carrier dynamics, and photovoltaic performance in model binary and ternary blend systems having a wide bandgap donor polymer, a fullerene, and a promising NFA. We show that optimal PC71BM incorporation in a PBDB-TF:ITIC-Th binary system matrix retains the original π-face-on orientation, ITIC-Th crystallinity and BHJ film crystallite dimensions, and reduces film upper surface ITIC-Th segregation. Such morphology changes together simultaneously increase hole ( μ h ) and electron ( μ e ) mobilities, facilitate light-activated ITIC-Th to PC71BM domain electron delocalization, reduce free charge carrier (FC) bimolecular recombination (BR) within PBDB-TF:ITIC-Th mixed regions, and increase FC extraction pathways via PBDB-TF:PC71BM pairs. The interplay of these effects yields significantly enhanced inverted cell short-circuit current density ( J SC ), fill factor (FF), and PCE. Unexpectedly, we also find that excessive PC71BM in the PBDB-TF:ITIC-Th binary system alters the PBDB-TF orientation to π-edge-on, increases large scale PC71BM-rich aggregations and BHJ upper surface PC71BM composition. These morphology changes increase parasitic decay processes such as intersystem crossing from photoexcited PC71BM, compromising the J SC , FF, and PCE metrics. ITIC-Th X-ray diffraction reveals a unique sidechain-dominated molecular network with previously unknown sidechain-end group stacking, rationalizing the STEM and GIWAXS results, photophysics, and the high μ e . DFT computation reveals charge transfer networks within ITIC-Th crystallites, supporting excited-state electron delocalization from ITIC-Th to PC71BM. This structure–property understanding leads to a newly reported NFA blend with PCE near 17%.
doi_str_mv 10.1039/D2EE03883H
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1957848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786899157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-d8d180a1da131f8a9c5408fbaf935f5c5bda8e7aad4491d578f5aef00e7a13603</originalsourceid><addsrcrecordid>eNpFkc1O3DAUhSNUpFLKpk9gtbuKUDuJE3tZwbRUQkKVyjq6sa-Jh8QOtjNonocXrelQsbpHR9_90ymKT4xeMFrLb1fVZkNrIerro-KEdbwpeUfbd_91K6v3xYcYt5S2Fe3kSfH8ewWXbIJkd0gCTll4F0e7RDJgekJ0xNhpJrMPy-gnf78_J2qEcI9EQQgWA9F7B7NV8ZyA0yRTye_8lMAqsmAwPszgFBLryLBOD-WICYPfrk69rCKDdRD2ZBcvSPb_aVAKl-QDGSZ0On4sjg1MEc9e62lx92Pz5_K6vLn9-evy-02pKtGmUgvNBAWmgdXMCJCKN1SYAYysueGKDxoEdgC6aSTTvBOGAxpKs8fqltanxefDXB-T7aOyCdWovHOoUs9kbmhEhr4coCX4xxVj6rd-zWdPsa860QopGe8y9fVAqeBjDGj6Jdg5_9Yz2r8k1b8lVf8FvhiK4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786899157</pqid></control><display><type>article</type><title>Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhu, Weigang ; Li, Guoping ; Mukherjee, Subhrangsu ; Powers-Riggs, Natalia E. ; Jones, Leighton O. ; Gann, Eliot ; Kline, R. Joseph ; Herzing, Andrew ; Logsdon, Jenna L. ; Flagg, Lucas ; Stern, Charlotte L. ; Young, Ryan M. ; Kohlstedt, Kevin L. ; Schatz, George C. ; DeLongchamp, Dean M. ; Wasielewski, Michael R. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</creator><creatorcontrib>Zhu, Weigang ; Li, Guoping ; Mukherjee, Subhrangsu ; Powers-Riggs, Natalia E. ; Jones, Leighton O. ; Gann, Eliot ; Kline, R. Joseph ; Herzing, Andrew ; Logsdon, Jenna L. ; Flagg, Lucas ; Stern, Charlotte L. ; Young, Ryan M. ; Kohlstedt, Kevin L. ; Schatz, George C. ; DeLongchamp, Dean M. ; Wasielewski, Michael R. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</creatorcontrib><description>Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar cell performance have stimulated many studies of polymer solar cells (PSCs), yet quantitative relationships remain limited. Better understanding in these areas offers the potential to advance materials design and device engineering, afford higher PCEs, and ultimate commercialization. Here we probe quantitative relationships between BHJ film morphology, charge carrier dynamics, and photovoltaic performance in model binary and ternary blend systems having a wide bandgap donor polymer, a fullerene, and a promising NFA. We show that optimal PC71BM incorporation in a PBDB-TF:ITIC-Th binary system matrix retains the original π-face-on orientation, ITIC-Th crystallinity and BHJ film crystallite dimensions, and reduces film upper surface ITIC-Th segregation. Such morphology changes together simultaneously increase hole ( μ h ) and electron ( μ e ) mobilities, facilitate light-activated ITIC-Th to PC71BM domain electron delocalization, reduce free charge carrier (FC) bimolecular recombination (BR) within PBDB-TF:ITIC-Th mixed regions, and increase FC extraction pathways via PBDB-TF:PC71BM pairs. The interplay of these effects yields significantly enhanced inverted cell short-circuit current density ( J SC ), fill factor (FF), and PCE. Unexpectedly, we also find that excessive PC71BM in the PBDB-TF:ITIC-Th binary system alters the PBDB-TF orientation to π-edge-on, increases large scale PC71BM-rich aggregations and BHJ upper surface PC71BM composition. These morphology changes increase parasitic decay processes such as intersystem crossing from photoexcited PC71BM, compromising the J SC , FF, and PCE metrics. ITIC-Th X-ray diffraction reveals a unique sidechain-dominated molecular network with previously unknown sidechain-end group stacking, rationalizing the STEM and GIWAXS results, photophysics, and the high μ e . DFT computation reveals charge transfer networks within ITIC-Th crystallites, supporting excited-state electron delocalization from ITIC-Th to PC71BM. This structure–property understanding leads to a newly reported NFA blend with PCE near 17%.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D2EE03883H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Binary system ; Carrier recombination ; Charge transfer ; Circuits ; Commercialization ; Crystallites ; Crystals ; Current carriers ; Cytology ; Energy conversion efficiency ; Fullerenes ; Heterojunctions ; Morphology ; Photovoltaic cells ; Photovoltaics ; Polymers ; Recombination ; Short circuit currents ; Short-circuit current ; Solar cells ; X-ray diffraction</subject><ispartof>Energy &amp; environmental science, 2023-03, Vol.16 (3), p.1234-1250</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-d8d180a1da131f8a9c5408fbaf935f5c5bda8e7aad4491d578f5aef00e7a13603</citedby><cites>FETCH-LOGICAL-c286t-d8d180a1da131f8a9c5408fbaf935f5c5bda8e7aad4491d578f5aef00e7a13603</cites><orcidid>0000-0002-9309-9622 ; 0000-0003-4693-9083 ; 0000-0002-5888-4481 ; 0000-0001-5570-8880 ; 0000-0002-5108-0261 ; 0000-0002-8193-9639 ; 0000-0003-2920-5440 ; 0000-0001-8228-9247 ; 0000-0003-0840-0757 ; 0000-0001-8045-0930 ; 0000-0001-6657-2632 ; 0000-0001-5944-2610 ; 0000-0001-5837-4740 ; 0000-0002-5479-3750 ; 0000-0002-8175-7958 ; 0000-0002-2798-5650 ; 0000-0003-2000-3770 ; 0000-0002-9491-289X ; 0000-0001-8771-0141 ; 0000000293099622 ; 0000000258884481 ; 0000000251080261 ; 0000000227985650 ; 0000000182289247 ; 0000000155708880 ; 0000000166572632 ; 0000000281757958 ; 0000000187710141 ; 0000000159442610 ; 0000000281939639 ; 0000000158374740 ; 0000000254793750 ; 0000000329205440 ; 0000000308400757 ; 0000000346939083 ; 0000000180450930 ; 000000029491289X ; 0000000320003770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1957848$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Weigang</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Mukherjee, Subhrangsu</creatorcontrib><creatorcontrib>Powers-Riggs, Natalia E.</creatorcontrib><creatorcontrib>Jones, Leighton O.</creatorcontrib><creatorcontrib>Gann, Eliot</creatorcontrib><creatorcontrib>Kline, R. Joseph</creatorcontrib><creatorcontrib>Herzing, Andrew</creatorcontrib><creatorcontrib>Logsdon, Jenna L.</creatorcontrib><creatorcontrib>Flagg, Lucas</creatorcontrib><creatorcontrib>Stern, Charlotte L.</creatorcontrib><creatorcontrib>Young, Ryan M.</creatorcontrib><creatorcontrib>Kohlstedt, Kevin L.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>DeLongchamp, Dean M.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><title>Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends</title><title>Energy &amp; environmental science</title><description>Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar cell performance have stimulated many studies of polymer solar cells (PSCs), yet quantitative relationships remain limited. Better understanding in these areas offers the potential to advance materials design and device engineering, afford higher PCEs, and ultimate commercialization. Here we probe quantitative relationships between BHJ film morphology, charge carrier dynamics, and photovoltaic performance in model binary and ternary blend systems having a wide bandgap donor polymer, a fullerene, and a promising NFA. We show that optimal PC71BM incorporation in a PBDB-TF:ITIC-Th binary system matrix retains the original π-face-on orientation, ITIC-Th crystallinity and BHJ film crystallite dimensions, and reduces film upper surface ITIC-Th segregation. Such morphology changes together simultaneously increase hole ( μ h ) and electron ( μ e ) mobilities, facilitate light-activated ITIC-Th to PC71BM domain electron delocalization, reduce free charge carrier (FC) bimolecular recombination (BR) within PBDB-TF:ITIC-Th mixed regions, and increase FC extraction pathways via PBDB-TF:PC71BM pairs. The interplay of these effects yields significantly enhanced inverted cell short-circuit current density ( J SC ), fill factor (FF), and PCE. Unexpectedly, we also find that excessive PC71BM in the PBDB-TF:ITIC-Th binary system alters the PBDB-TF orientation to π-edge-on, increases large scale PC71BM-rich aggregations and BHJ upper surface PC71BM composition. These morphology changes increase parasitic decay processes such as intersystem crossing from photoexcited PC71BM, compromising the J SC , FF, and PCE metrics. ITIC-Th X-ray diffraction reveals a unique sidechain-dominated molecular network with previously unknown sidechain-end group stacking, rationalizing the STEM and GIWAXS results, photophysics, and the high μ e . DFT computation reveals charge transfer networks within ITIC-Th crystallites, supporting excited-state electron delocalization from ITIC-Th to PC71BM. This structure–property understanding leads to a newly reported NFA blend with PCE near 17%.</description><subject>Binary system</subject><subject>Carrier recombination</subject><subject>Charge transfer</subject><subject>Circuits</subject><subject>Commercialization</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Cytology</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>Morphology</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Polymers</subject><subject>Recombination</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>X-ray diffraction</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkc1O3DAUhSNUpFLKpk9gtbuKUDuJE3tZwbRUQkKVyjq6sa-Jh8QOtjNonocXrelQsbpHR9_90ymKT4xeMFrLb1fVZkNrIerro-KEdbwpeUfbd_91K6v3xYcYt5S2Fe3kSfH8ewWXbIJkd0gCTll4F0e7RDJgekJ0xNhpJrMPy-gnf78_J2qEcI9EQQgWA9F7B7NV8ZyA0yRTye_8lMAqsmAwPszgFBLryLBOD-WICYPfrk69rCKDdRD2ZBcvSPb_aVAKl-QDGSZ0On4sjg1MEc9e62lx92Pz5_K6vLn9-evy-02pKtGmUgvNBAWmgdXMCJCKN1SYAYysueGKDxoEdgC6aSTTvBOGAxpKs8fqltanxefDXB-T7aOyCdWovHOoUs9kbmhEhr4coCX4xxVj6rd-zWdPsa860QopGe8y9fVAqeBjDGj6Jdg5_9Yz2r8k1b8lVf8FvhiK4g</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Zhu, Weigang</creator><creator>Li, Guoping</creator><creator>Mukherjee, Subhrangsu</creator><creator>Powers-Riggs, Natalia E.</creator><creator>Jones, Leighton O.</creator><creator>Gann, Eliot</creator><creator>Kline, R. Joseph</creator><creator>Herzing, Andrew</creator><creator>Logsdon, Jenna L.</creator><creator>Flagg, Lucas</creator><creator>Stern, Charlotte L.</creator><creator>Young, Ryan M.</creator><creator>Kohlstedt, Kevin L.</creator><creator>Schatz, George C.</creator><creator>DeLongchamp, Dean M.</creator><creator>Wasielewski, Michael R.</creator><creator>Melkonyan, Ferdinand S.</creator><creator>Facchetti, Antonio</creator><creator>Marks, Tobin J.</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9309-9622</orcidid><orcidid>https://orcid.org/0000-0003-4693-9083</orcidid><orcidid>https://orcid.org/0000-0002-5888-4481</orcidid><orcidid>https://orcid.org/0000-0001-5570-8880</orcidid><orcidid>https://orcid.org/0000-0002-5108-0261</orcidid><orcidid>https://orcid.org/0000-0002-8193-9639</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000-0001-8228-9247</orcidid><orcidid>https://orcid.org/0000-0003-0840-0757</orcidid><orcidid>https://orcid.org/0000-0001-8045-0930</orcidid><orcidid>https://orcid.org/0000-0001-6657-2632</orcidid><orcidid>https://orcid.org/0000-0001-5944-2610</orcidid><orcidid>https://orcid.org/0000-0001-5837-4740</orcidid><orcidid>https://orcid.org/0000-0002-5479-3750</orcidid><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0002-2798-5650</orcidid><orcidid>https://orcid.org/0000-0003-2000-3770</orcidid><orcidid>https://orcid.org/0000-0002-9491-289X</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000000293099622</orcidid><orcidid>https://orcid.org/0000000258884481</orcidid><orcidid>https://orcid.org/0000000251080261</orcidid><orcidid>https://orcid.org/0000000227985650</orcidid><orcidid>https://orcid.org/0000000182289247</orcidid><orcidid>https://orcid.org/0000000155708880</orcidid><orcidid>https://orcid.org/0000000166572632</orcidid><orcidid>https://orcid.org/0000000281757958</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid><orcidid>https://orcid.org/0000000159442610</orcidid><orcidid>https://orcid.org/0000000281939639</orcidid><orcidid>https://orcid.org/0000000158374740</orcidid><orcidid>https://orcid.org/0000000254793750</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000308400757</orcidid><orcidid>https://orcid.org/0000000346939083</orcidid><orcidid>https://orcid.org/0000000180450930</orcidid><orcidid>https://orcid.org/000000029491289X</orcidid><orcidid>https://orcid.org/0000000320003770</orcidid></search><sort><creationdate>20230315</creationdate><title>Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends</title><author>Zhu, Weigang ; Li, Guoping ; Mukherjee, Subhrangsu ; Powers-Riggs, Natalia E. ; Jones, Leighton O. ; Gann, Eliot ; Kline, R. Joseph ; Herzing, Andrew ; Logsdon, Jenna L. ; Flagg, Lucas ; Stern, Charlotte L. ; Young, Ryan M. ; Kohlstedt, Kevin L. ; Schatz, George C. ; DeLongchamp, Dean M. ; Wasielewski, Michael R. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-d8d180a1da131f8a9c5408fbaf935f5c5bda8e7aad4491d578f5aef00e7a13603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binary system</topic><topic>Carrier recombination</topic><topic>Charge transfer</topic><topic>Circuits</topic><topic>Commercialization</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Cytology</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>Morphology</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Polymers</topic><topic>Recombination</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Weigang</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Mukherjee, Subhrangsu</creatorcontrib><creatorcontrib>Powers-Riggs, Natalia E.</creatorcontrib><creatorcontrib>Jones, Leighton O.</creatorcontrib><creatorcontrib>Gann, Eliot</creatorcontrib><creatorcontrib>Kline, R. Joseph</creatorcontrib><creatorcontrib>Herzing, Andrew</creatorcontrib><creatorcontrib>Logsdon, Jenna L.</creatorcontrib><creatorcontrib>Flagg, Lucas</creatorcontrib><creatorcontrib>Stern, Charlotte L.</creatorcontrib><creatorcontrib>Young, Ryan M.</creatorcontrib><creatorcontrib>Kohlstedt, Kevin L.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>DeLongchamp, Dean M.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Weigang</au><au>Li, Guoping</au><au>Mukherjee, Subhrangsu</au><au>Powers-Riggs, Natalia E.</au><au>Jones, Leighton O.</au><au>Gann, Eliot</au><au>Kline, R. Joseph</au><au>Herzing, Andrew</au><au>Logsdon, Jenna L.</au><au>Flagg, Lucas</au><au>Stern, Charlotte L.</au><au>Young, Ryan M.</au><au>Kohlstedt, Kevin L.</au><au>Schatz, George C.</au><au>DeLongchamp, Dean M.</au><au>Wasielewski, Michael R.</au><au>Melkonyan, Ferdinand S.</au><au>Facchetti, Antonio</au><au>Marks, Tobin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1234</spage><epage>1250</epage><pages>1234-1250</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Addressing pertinent and perplexing questions regarding why nonfullerene acceptors (NFAs) promote higher power conversion efficiencies (PCEs) than traditional fullerenes and how photoactive bulk heterojunction (BHJ) film morphology, charge photogeneration, and recombination dynamics dictate solar cell performance have stimulated many studies of polymer solar cells (PSCs), yet quantitative relationships remain limited. Better understanding in these areas offers the potential to advance materials design and device engineering, afford higher PCEs, and ultimate commercialization. Here we probe quantitative relationships between BHJ film morphology, charge carrier dynamics, and photovoltaic performance in model binary and ternary blend systems having a wide bandgap donor polymer, a fullerene, and a promising NFA. We show that optimal PC71BM incorporation in a PBDB-TF:ITIC-Th binary system matrix retains the original π-face-on orientation, ITIC-Th crystallinity and BHJ film crystallite dimensions, and reduces film upper surface ITIC-Th segregation. Such morphology changes together simultaneously increase hole ( μ h ) and electron ( μ e ) mobilities, facilitate light-activated ITIC-Th to PC71BM domain electron delocalization, reduce free charge carrier (FC) bimolecular recombination (BR) within PBDB-TF:ITIC-Th mixed regions, and increase FC extraction pathways via PBDB-TF:PC71BM pairs. The interplay of these effects yields significantly enhanced inverted cell short-circuit current density ( J SC ), fill factor (FF), and PCE. Unexpectedly, we also find that excessive PC71BM in the PBDB-TF:ITIC-Th binary system alters the PBDB-TF orientation to π-edge-on, increases large scale PC71BM-rich aggregations and BHJ upper surface PC71BM composition. These morphology changes increase parasitic decay processes such as intersystem crossing from photoexcited PC71BM, compromising the J SC , FF, and PCE metrics. ITIC-Th X-ray diffraction reveals a unique sidechain-dominated molecular network with previously unknown sidechain-end group stacking, rationalizing the STEM and GIWAXS results, photophysics, and the high μ e . DFT computation reveals charge transfer networks within ITIC-Th crystallites, supporting excited-state electron delocalization from ITIC-Th to PC71BM. This structure–property understanding leads to a newly reported NFA blend with PCE near 17%.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2EE03883H</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9309-9622</orcidid><orcidid>https://orcid.org/0000-0003-4693-9083</orcidid><orcidid>https://orcid.org/0000-0002-5888-4481</orcidid><orcidid>https://orcid.org/0000-0001-5570-8880</orcidid><orcidid>https://orcid.org/0000-0002-5108-0261</orcidid><orcidid>https://orcid.org/0000-0002-8193-9639</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000-0001-8228-9247</orcidid><orcidid>https://orcid.org/0000-0003-0840-0757</orcidid><orcidid>https://orcid.org/0000-0001-8045-0930</orcidid><orcidid>https://orcid.org/0000-0001-6657-2632</orcidid><orcidid>https://orcid.org/0000-0001-5944-2610</orcidid><orcidid>https://orcid.org/0000-0001-5837-4740</orcidid><orcidid>https://orcid.org/0000-0002-5479-3750</orcidid><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0002-2798-5650</orcidid><orcidid>https://orcid.org/0000-0003-2000-3770</orcidid><orcidid>https://orcid.org/0000-0002-9491-289X</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000000293099622</orcidid><orcidid>https://orcid.org/0000000258884481</orcidid><orcidid>https://orcid.org/0000000251080261</orcidid><orcidid>https://orcid.org/0000000227985650</orcidid><orcidid>https://orcid.org/0000000182289247</orcidid><orcidid>https://orcid.org/0000000155708880</orcidid><orcidid>https://orcid.org/0000000166572632</orcidid><orcidid>https://orcid.org/0000000281757958</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid><orcidid>https://orcid.org/0000000159442610</orcidid><orcidid>https://orcid.org/0000000281939639</orcidid><orcidid>https://orcid.org/0000000158374740</orcidid><orcidid>https://orcid.org/0000000254793750</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000308400757</orcidid><orcidid>https://orcid.org/0000000346939083</orcidid><orcidid>https://orcid.org/0000000180450930</orcidid><orcidid>https://orcid.org/000000029491289X</orcidid><orcidid>https://orcid.org/0000000320003770</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-03, Vol.16 (3), p.1234-1250
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1957848
source Royal Society Of Chemistry Journals 2008-
subjects Binary system
Carrier recombination
Charge transfer
Circuits
Commercialization
Crystallites
Crystals
Current carriers
Cytology
Energy conversion efficiency
Fullerenes
Heterojunctions
Morphology
Photovoltaic cells
Photovoltaics
Polymers
Recombination
Short circuit currents
Short-circuit current
Solar cells
X-ray diffraction
title Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20relationships%20between%20film%20morphology,%20charge%20carrier%20dynamics,%20and%20photovoltaic%20performance%20in%20bulk-heterojunction%20binary%20vs.%20ternary%20acceptor%20blends&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhu,%20Weigang&rft.date=2023-03-15&rft.volume=16&rft.issue=3&rft.spage=1234&rft.epage=1250&rft.pages=1234-1250&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D2EE03883H&rft_dat=%3Cproquest_osti_%3E2786899157%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786899157&rft_id=info:pmid/&rfr_iscdi=true