tell: a Python package to model future total electricity loads in the United States
The purpose of the Total ELectricity Load (tell) model is to generate 21st century profiles of hourly electricity load (demand) across the Conterminous United States (CONUS). tell loads reflect the impact of climate and socioeconomic change at a spatial and temporal resolution adequate for input to...
Gespeichert in:
Veröffentlicht in: | Journal of open source software 2022-11, Vol.7 (79), p.4472 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 79 |
container_start_page | 4472 |
container_title | Journal of open source software |
container_volume | 7 |
creator | McGrath, Casey R. Burleyson, Casey D. Khan, Zarrar Rahman, Aowabin Thurber, Travis Vernon, Chris R. Voisin, Nathalie Rice, Jennie S. |
description | The purpose of the Total ELectricity Load (tell) model is to generate 21st century profiles of hourly electricity load (demand) across the Conterminous United States (CONUS). tell loads reflect the impact of climate and socioeconomic change at a spatial and temporal resolution adequate for input to an electricity grid operations model. tell uses machine learning to develop profiles that are driven by projections of climate/meteorology and population. tell also harmonizes its results with United States (U.S.) state-level, annual projections from a national- to global-scale energy-economy model. This model accounts for a wide range of other factors affecting electricity demand, including technology change in the building sector, energy prices, and demand elasticities, which stems from model coupling with the U.S. version of the Global Change Analysis Model (GCAM-USA). tell was developed as part of the Integrated Multisector Multiscale Modeling (IM3) project. IM3 explores the vulnerability and resilience of interacting energy, water, land, and urban systems in response to compound stressors, such as climate trends, extreme events, population, urbanization, energy system transitions, and technology change |
doi_str_mv | 10.21105/joss.04472 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1925227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_21105_joss_04472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1422-c06f8bb27498c58b27e04cf3b965dd6a7a197f6b877087a4caf3398bf83c55c63</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWGpP_oHgVbYm2XytNyl-QUGh9hyy7yZ2a7opm_Sw_95t68HTzMAwDA9Ct5TMGaVEPGxjSnPCuWIXaMK4EkVFpLz856_RLKUtIYRqySSlE7TKLoRHbPHnkDexw3sLP_bb4RzxLjYuYH_Ih_6Ysw3YBQe5b6HNAw7RNgm3Hc4bh9ddm12DV9lml27QlbchudmfTtH65flr8VYsP17fF0_LAihnrAAiva5rpnilQejROMLBl3UlRdNIqyytlJe1VopoZTlYX5aVrr0uQQiQ5RTdnXdjyq1J4ysHG4hdN540tGKCMTWW7s8l6Ec8vfNm37c72w-GEnPiZo7czIlb-Qt9nGBj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>tell: a Python package to model future total electricity loads in the United States</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>McGrath, Casey R. ; Burleyson, Casey D. ; Khan, Zarrar ; Rahman, Aowabin ; Thurber, Travis ; Vernon, Chris R. ; Voisin, Nathalie ; Rice, Jennie S.</creator><creatorcontrib>McGrath, Casey R. ; Burleyson, Casey D. ; Khan, Zarrar ; Rahman, Aowabin ; Thurber, Travis ; Vernon, Chris R. ; Voisin, Nathalie ; Rice, Jennie S. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>The purpose of the Total ELectricity Load (tell) model is to generate 21st century profiles of hourly electricity load (demand) across the Conterminous United States (CONUS). tell loads reflect the impact of climate and socioeconomic change at a spatial and temporal resolution adequate for input to an electricity grid operations model. tell uses machine learning to develop profiles that are driven by projections of climate/meteorology and population. tell also harmonizes its results with United States (U.S.) state-level, annual projections from a national- to global-scale energy-economy model. This model accounts for a wide range of other factors affecting electricity demand, including technology change in the building sector, energy prices, and demand elasticities, which stems from model coupling with the U.S. version of the Global Change Analysis Model (GCAM-USA). tell was developed as part of the Integrated Multisector Multiscale Modeling (IM3) project. IM3 explores the vulnerability and resilience of interacting energy, water, land, and urban systems in response to compound stressors, such as climate trends, extreme events, population, urbanization, energy system transitions, and technology change</description><identifier>ISSN: 2475-9066</identifier><identifier>EISSN: 2475-9066</identifier><identifier>DOI: 10.21105/joss.04472</identifier><language>eng</language><publisher>United States: Open Source Initiative - NumFOCUS</publisher><subject>MATHEMATICS AND COMPUTING ; POWER TRANSMISSION AND DISTRIBUTION</subject><ispartof>Journal of open source software, 2022-11, Vol.7 (79), p.4472</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1422-c06f8bb27498c58b27e04cf3b965dd6a7a197f6b877087a4caf3398bf83c55c63</citedby><cites>FETCH-LOGICAL-c1422-c06f8bb27498c58b27e04cf3b965dd6a7a197f6b877087a4caf3398bf83c55c63</cites><orcidid>0000-0002-7833-9456 ; 0000-0002-8147-8553 ; 0000-0001-6218-9361 ; 0000-0003-2543-5126 ; 0000-0002-3406-6214 ; 0000-0002-4370-9971 ; 0000-0002-8808-8312 ; 0000-0002-6848-449X ; 0000000288088312 ; 0000000162189361 ; 0000000234066214 ; 0000000281478553 ; 0000000243709971 ; 0000000325435126 ; 0000000278339456 ; 000000026848449X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1925227$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McGrath, Casey R.</creatorcontrib><creatorcontrib>Burleyson, Casey D.</creatorcontrib><creatorcontrib>Khan, Zarrar</creatorcontrib><creatorcontrib>Rahman, Aowabin</creatorcontrib><creatorcontrib>Thurber, Travis</creatorcontrib><creatorcontrib>Vernon, Chris R.</creatorcontrib><creatorcontrib>Voisin, Nathalie</creatorcontrib><creatorcontrib>Rice, Jennie S.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>tell: a Python package to model future total electricity loads in the United States</title><title>Journal of open source software</title><description>The purpose of the Total ELectricity Load (tell) model is to generate 21st century profiles of hourly electricity load (demand) across the Conterminous United States (CONUS). tell loads reflect the impact of climate and socioeconomic change at a spatial and temporal resolution adequate for input to an electricity grid operations model. tell uses machine learning to develop profiles that are driven by projections of climate/meteorology and population. tell also harmonizes its results with United States (U.S.) state-level, annual projections from a national- to global-scale energy-economy model. This model accounts for a wide range of other factors affecting electricity demand, including technology change in the building sector, energy prices, and demand elasticities, which stems from model coupling with the U.S. version of the Global Change Analysis Model (GCAM-USA). tell was developed as part of the Integrated Multisector Multiscale Modeling (IM3) project. IM3 explores the vulnerability and resilience of interacting energy, water, land, and urban systems in response to compound stressors, such as climate trends, extreme events, population, urbanization, energy system transitions, and technology change</description><subject>MATHEMATICS AND COMPUTING</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><issn>2475-9066</issn><issn>2475-9066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEYhIMoWGpP_oHgVbYm2XytNyl-QUGh9hyy7yZ2a7opm_Sw_95t68HTzMAwDA9Ct5TMGaVEPGxjSnPCuWIXaMK4EkVFpLz856_RLKUtIYRqySSlE7TKLoRHbPHnkDexw3sLP_bb4RzxLjYuYH_Ih_6Ysw3YBQe5b6HNAw7RNgm3Hc4bh9ddm12DV9lml27QlbchudmfTtH65flr8VYsP17fF0_LAihnrAAiva5rpnilQejROMLBl3UlRdNIqyytlJe1VopoZTlYX5aVrr0uQQiQ5RTdnXdjyq1J4ysHG4hdN540tGKCMTWW7s8l6Ec8vfNm37c72w-GEnPiZo7czIlb-Qt9nGBj</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>McGrath, Casey R.</creator><creator>Burleyson, Casey D.</creator><creator>Khan, Zarrar</creator><creator>Rahman, Aowabin</creator><creator>Thurber, Travis</creator><creator>Vernon, Chris R.</creator><creator>Voisin, Nathalie</creator><creator>Rice, Jennie S.</creator><general>Open Source Initiative - NumFOCUS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7833-9456</orcidid><orcidid>https://orcid.org/0000-0002-8147-8553</orcidid><orcidid>https://orcid.org/0000-0001-6218-9361</orcidid><orcidid>https://orcid.org/0000-0003-2543-5126</orcidid><orcidid>https://orcid.org/0000-0002-3406-6214</orcidid><orcidid>https://orcid.org/0000-0002-4370-9971</orcidid><orcidid>https://orcid.org/0000-0002-8808-8312</orcidid><orcidid>https://orcid.org/0000-0002-6848-449X</orcidid><orcidid>https://orcid.org/0000000288088312</orcidid><orcidid>https://orcid.org/0000000162189361</orcidid><orcidid>https://orcid.org/0000000234066214</orcidid><orcidid>https://orcid.org/0000000281478553</orcidid><orcidid>https://orcid.org/0000000243709971</orcidid><orcidid>https://orcid.org/0000000325435126</orcidid><orcidid>https://orcid.org/0000000278339456</orcidid><orcidid>https://orcid.org/000000026848449X</orcidid></search><sort><creationdate>20221111</creationdate><title>tell: a Python package to model future total electricity loads in the United States</title><author>McGrath, Casey R. ; Burleyson, Casey D. ; Khan, Zarrar ; Rahman, Aowabin ; Thurber, Travis ; Vernon, Chris R. ; Voisin, Nathalie ; Rice, Jennie S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1422-c06f8bb27498c58b27e04cf3b965dd6a7a197f6b877087a4caf3398bf83c55c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>MATHEMATICS AND COMPUTING</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>McGrath, Casey R.</creatorcontrib><creatorcontrib>Burleyson, Casey D.</creatorcontrib><creatorcontrib>Khan, Zarrar</creatorcontrib><creatorcontrib>Rahman, Aowabin</creatorcontrib><creatorcontrib>Thurber, Travis</creatorcontrib><creatorcontrib>Vernon, Chris R.</creatorcontrib><creatorcontrib>Voisin, Nathalie</creatorcontrib><creatorcontrib>Rice, Jennie S.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of open source software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGrath, Casey R.</au><au>Burleyson, Casey D.</au><au>Khan, Zarrar</au><au>Rahman, Aowabin</au><au>Thurber, Travis</au><au>Vernon, Chris R.</au><au>Voisin, Nathalie</au><au>Rice, Jennie S.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tell: a Python package to model future total electricity loads in the United States</atitle><jtitle>Journal of open source software</jtitle><date>2022-11-11</date><risdate>2022</risdate><volume>7</volume><issue>79</issue><spage>4472</spage><pages>4472-</pages><issn>2475-9066</issn><eissn>2475-9066</eissn><abstract>The purpose of the Total ELectricity Load (tell) model is to generate 21st century profiles of hourly electricity load (demand) across the Conterminous United States (CONUS). tell loads reflect the impact of climate and socioeconomic change at a spatial and temporal resolution adequate for input to an electricity grid operations model. tell uses machine learning to develop profiles that are driven by projections of climate/meteorology and population. tell also harmonizes its results with United States (U.S.) state-level, annual projections from a national- to global-scale energy-economy model. This model accounts for a wide range of other factors affecting electricity demand, including technology change in the building sector, energy prices, and demand elasticities, which stems from model coupling with the U.S. version of the Global Change Analysis Model (GCAM-USA). tell was developed as part of the Integrated Multisector Multiscale Modeling (IM3) project. IM3 explores the vulnerability and resilience of interacting energy, water, land, and urban systems in response to compound stressors, such as climate trends, extreme events, population, urbanization, energy system transitions, and technology change</abstract><cop>United States</cop><pub>Open Source Initiative - NumFOCUS</pub><doi>10.21105/joss.04472</doi><orcidid>https://orcid.org/0000-0002-7833-9456</orcidid><orcidid>https://orcid.org/0000-0002-8147-8553</orcidid><orcidid>https://orcid.org/0000-0001-6218-9361</orcidid><orcidid>https://orcid.org/0000-0003-2543-5126</orcidid><orcidid>https://orcid.org/0000-0002-3406-6214</orcidid><orcidid>https://orcid.org/0000-0002-4370-9971</orcidid><orcidid>https://orcid.org/0000-0002-8808-8312</orcidid><orcidid>https://orcid.org/0000-0002-6848-449X</orcidid><orcidid>https://orcid.org/0000000288088312</orcidid><orcidid>https://orcid.org/0000000162189361</orcidid><orcidid>https://orcid.org/0000000234066214</orcidid><orcidid>https://orcid.org/0000000281478553</orcidid><orcidid>https://orcid.org/0000000243709971</orcidid><orcidid>https://orcid.org/0000000325435126</orcidid><orcidid>https://orcid.org/0000000278339456</orcidid><orcidid>https://orcid.org/000000026848449X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-9066 |
ispartof | Journal of open source software, 2022-11, Vol.7 (79), p.4472 |
issn | 2475-9066 2475-9066 |
language | eng |
recordid | cdi_osti_scitechconnect_1925227 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | MATHEMATICS AND COMPUTING POWER TRANSMISSION AND DISTRIBUTION |
title | tell: a Python package to model future total electricity loads in the United States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tell:%20a%20Python%20package%20to%20model%20future%20total%20electricity%20loads%20in%20the%20United%20States&rft.jtitle=Journal%20of%20open%20source%20software&rft.au=McGrath,%20Casey%20R.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2022-11-11&rft.volume=7&rft.issue=79&rft.spage=4472&rft.pages=4472-&rft.issn=2475-9066&rft.eissn=2475-9066&rft_id=info:doi/10.21105/joss.04472&rft_dat=%3Ccrossref_osti_%3E10_21105_joss_04472%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |