Local Decomposition of Hexahedral Singular Nodes into Singular Curves

Hexahedral (hex) meshing is a long studied topic in geometry processing with many challenging associated problems. Hex meshes vary from structured to unstructured depending on application or domain of interest. Fully structured meshes require that all interior mesh edges be adjacent to four hexes ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2023-05, Vol.158 (C), p.103484, Article 103484
Hauptverfasser: Zhang, Paul, Chiang, Judy (Hsin-Hui), Fan, Xinyi (Cynthia), Mundilova, Klara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 103484
container_title Computer aided design
container_volume 158
creator Zhang, Paul
Chiang, Judy (Hsin-Hui)
Fan, Xinyi (Cynthia)
Mundilova, Klara
description Hexahedral (hex) meshing is a long studied topic in geometry processing with many challenging associated problems. Hex meshes vary from structured to unstructured depending on application or domain of interest. Fully structured meshes require that all interior mesh edges be adjacent to four hexes each. Edges failing this criteria are singular and indicate an unstructured hex mesh. Singular edges join together into singular curves that either form closed cycles, end on the mesh boundary, or end at a singular node, a complex junction of more than two singular curves. Hex meshes with more complex singular nodes tend to have more distorted elements and smaller scaled Jacobian values. In this work, we study the topology of singular nodes. We show that all eight of the most common singular nodes are decomposable into just singular curves. We further show that all singular nodes, regardless of edge valence, are locally decomposable. Finally we demonstrate these decompositions on hex meshes, thereby decreasing their distortion and converting all singular nodes into singular curves. With this decomposition, the enigmatic complexity of 3D singular nodes becomes effectively 2D. [Display omitted] •Explicit construction of singular decomposition for eight most common singular nodes.•Proof that all singular nodes are locally decomposable.•Algorithm and demonstration for singular decomposition on various hexahedral meshes.
doi_str_mv 10.1016/j.cad.2023.103484
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1924564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448523000167</els_id><sourcerecordid>S0010448523000167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-876d99d5014b26016ca196f7722921d2d14c9eecb2b746302eb222d035139ddb3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wNvifWsyyWY3eJJarVD0oJ7DbjJrU9pNSbZF_71ZVvDmaZiZ9x6Pj5BrRmeMMnm7mZnazoACTzsXlTghE1aVKgdZFadkQimjuRBVcU4uYtxQSoFxNSGLlTf1NntA43d7H13vfJf5NlviV71GG9LvzXWfh20dshdvMWau6_3fbX4IR4yX5KyttxGvfueUfDwu3ufLfPX69Dy_X-WGy7LPq1JapWxBmWhAptqmZkq2ZQmggFmwTBiFaBpoSiE5BWwAwFJepK7WNnxKbsZcH3uno3E9mrXxXYem10yBKKRIIjaKTPAxBmz1PrhdHb41o3qApTc6wdIDLD3CSp670YOp_dFhGMKxM2hdGLKtd_-4fwAP8XBH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local Decomposition of Hexahedral Singular Nodes into Singular Curves</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Paul ; Chiang, Judy (Hsin-Hui) ; Fan, Xinyi (Cynthia) ; Mundilova, Klara</creator><creatorcontrib>Zhang, Paul ; Chiang, Judy (Hsin-Hui) ; Fan, Xinyi (Cynthia) ; Mundilova, Klara</creatorcontrib><description>Hexahedral (hex) meshing is a long studied topic in geometry processing with many challenging associated problems. Hex meshes vary from structured to unstructured depending on application or domain of interest. Fully structured meshes require that all interior mesh edges be adjacent to four hexes each. Edges failing this criteria are singular and indicate an unstructured hex mesh. Singular edges join together into singular curves that either form closed cycles, end on the mesh boundary, or end at a singular node, a complex junction of more than two singular curves. Hex meshes with more complex singular nodes tend to have more distorted elements and smaller scaled Jacobian values. In this work, we study the topology of singular nodes. We show that all eight of the most common singular nodes are decomposable into just singular curves. We further show that all singular nodes, regardless of edge valence, are locally decomposable. Finally we demonstrate these decompositions on hex meshes, thereby decreasing their distortion and converting all singular nodes into singular curves. With this decomposition, the enigmatic complexity of 3D singular nodes becomes effectively 2D. [Display omitted] •Explicit construction of singular decomposition for eight most common singular nodes.•Proof that all singular nodes are locally decomposable.•Algorithm and demonstration for singular decomposition on various hexahedral meshes.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2023.103484</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Computational geometry ; Hexahedral mesh ; Singular graph</subject><ispartof>Computer aided design, 2023-05, Vol.158 (C), p.103484, Article 103484</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-876d99d5014b26016ca196f7722921d2d14c9eecb2b746302eb222d035139ddb3</citedby><cites>FETCH-LOGICAL-c367t-876d99d5014b26016ca196f7722921d2d14c9eecb2b746302eb222d035139ddb3</cites><orcidid>0000-0003-4136-1315 ; 0000000341361315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010448523000167$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1924564$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Paul</creatorcontrib><creatorcontrib>Chiang, Judy (Hsin-Hui)</creatorcontrib><creatorcontrib>Fan, Xinyi (Cynthia)</creatorcontrib><creatorcontrib>Mundilova, Klara</creatorcontrib><title>Local Decomposition of Hexahedral Singular Nodes into Singular Curves</title><title>Computer aided design</title><description>Hexahedral (hex) meshing is a long studied topic in geometry processing with many challenging associated problems. Hex meshes vary from structured to unstructured depending on application or domain of interest. Fully structured meshes require that all interior mesh edges be adjacent to four hexes each. Edges failing this criteria are singular and indicate an unstructured hex mesh. Singular edges join together into singular curves that either form closed cycles, end on the mesh boundary, or end at a singular node, a complex junction of more than two singular curves. Hex meshes with more complex singular nodes tend to have more distorted elements and smaller scaled Jacobian values. In this work, we study the topology of singular nodes. We show that all eight of the most common singular nodes are decomposable into just singular curves. We further show that all singular nodes, regardless of edge valence, are locally decomposable. Finally we demonstrate these decompositions on hex meshes, thereby decreasing their distortion and converting all singular nodes into singular curves. With this decomposition, the enigmatic complexity of 3D singular nodes becomes effectively 2D. [Display omitted] •Explicit construction of singular decomposition for eight most common singular nodes.•Proof that all singular nodes are locally decomposable.•Algorithm and demonstration for singular decomposition on various hexahedral meshes.</description><subject>Computational geometry</subject><subject>Hexahedral mesh</subject><subject>Singular graph</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wNvifWsyyWY3eJJarVD0oJ7DbjJrU9pNSbZF_71ZVvDmaZiZ9x6Pj5BrRmeMMnm7mZnazoACTzsXlTghE1aVKgdZFadkQimjuRBVcU4uYtxQSoFxNSGLlTf1NntA43d7H13vfJf5NlviV71GG9LvzXWfh20dshdvMWau6_3fbX4IR4yX5KyttxGvfueUfDwu3ufLfPX69Dy_X-WGy7LPq1JapWxBmWhAptqmZkq2ZQmggFmwTBiFaBpoSiE5BWwAwFJepK7WNnxKbsZcH3uno3E9mrXxXYem10yBKKRIIjaKTPAxBmz1PrhdHb41o3qApTc6wdIDLD3CSp670YOp_dFhGMKxM2hdGLKtd_-4fwAP8XBH</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zhang, Paul</creator><creator>Chiang, Judy (Hsin-Hui)</creator><creator>Fan, Xinyi (Cynthia)</creator><creator>Mundilova, Klara</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4136-1315</orcidid><orcidid>https://orcid.org/0000000341361315</orcidid></search><sort><creationdate>202305</creationdate><title>Local Decomposition of Hexahedral Singular Nodes into Singular Curves</title><author>Zhang, Paul ; Chiang, Judy (Hsin-Hui) ; Fan, Xinyi (Cynthia) ; Mundilova, Klara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-876d99d5014b26016ca196f7722921d2d14c9eecb2b746302eb222d035139ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational geometry</topic><topic>Hexahedral mesh</topic><topic>Singular graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Paul</creatorcontrib><creatorcontrib>Chiang, Judy (Hsin-Hui)</creatorcontrib><creatorcontrib>Fan, Xinyi (Cynthia)</creatorcontrib><creatorcontrib>Mundilova, Klara</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Paul</au><au>Chiang, Judy (Hsin-Hui)</au><au>Fan, Xinyi (Cynthia)</au><au>Mundilova, Klara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Decomposition of Hexahedral Singular Nodes into Singular Curves</atitle><jtitle>Computer aided design</jtitle><date>2023-05</date><risdate>2023</risdate><volume>158</volume><issue>C</issue><spage>103484</spage><pages>103484-</pages><artnum>103484</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>Hexahedral (hex) meshing is a long studied topic in geometry processing with many challenging associated problems. Hex meshes vary from structured to unstructured depending on application or domain of interest. Fully structured meshes require that all interior mesh edges be adjacent to four hexes each. Edges failing this criteria are singular and indicate an unstructured hex mesh. Singular edges join together into singular curves that either form closed cycles, end on the mesh boundary, or end at a singular node, a complex junction of more than two singular curves. Hex meshes with more complex singular nodes tend to have more distorted elements and smaller scaled Jacobian values. In this work, we study the topology of singular nodes. We show that all eight of the most common singular nodes are decomposable into just singular curves. We further show that all singular nodes, regardless of edge valence, are locally decomposable. Finally we demonstrate these decompositions on hex meshes, thereby decreasing their distortion and converting all singular nodes into singular curves. With this decomposition, the enigmatic complexity of 3D singular nodes becomes effectively 2D. [Display omitted] •Explicit construction of singular decomposition for eight most common singular nodes.•Proof that all singular nodes are locally decomposable.•Algorithm and demonstration for singular decomposition on various hexahedral meshes.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2023.103484</doi><orcidid>https://orcid.org/0000-0003-4136-1315</orcidid><orcidid>https://orcid.org/0000000341361315</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2023-05, Vol.158 (C), p.103484, Article 103484
issn 0010-4485
1879-2685
language eng
recordid cdi_osti_scitechconnect_1924564
source ScienceDirect Journals (5 years ago - present)
subjects Computational geometry
Hexahedral mesh
Singular graph
title Local Decomposition of Hexahedral Singular Nodes into Singular Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Decomposition%20of%20Hexahedral%20Singular%20Nodes%20into%20Singular%20Curves&rft.jtitle=Computer%20aided%20design&rft.au=Zhang,%20Paul&rft.date=2023-05&rft.volume=158&rft.issue=C&rft.spage=103484&rft.pages=103484-&rft.artnum=103484&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2023.103484&rft_dat=%3Celsevier_osti_%3ES0010448523000167%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0010448523000167&rfr_iscdi=true