Mechanically induced thermal runaway severity analysis for Li-ion batteries
Thermal runaway is one of the most important safety concerns in the deployment of Li-ion batteries. We developed a standardized single-side indentation test protocol to induce an internal short-circuit. Cell voltage, temperature, and applied compressive force are monitored as a function of time. Eac...
Gespeichert in:
Veröffentlicht in: | Journal of energy storage 2023-05, Vol.61 (1), p.106798, Article 106798 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 106798 |
container_title | Journal of energy storage |
container_volume | 61 |
creator | Lin, L.S. Li, J.L. Fishman, I.M. Torres-Castro, L. Preger, Y. De Angelis, V. Lamb, J. Zhu, X.Q. Allu, S. Wang, H. |
description | Thermal runaway is one of the most important safety concerns in the deployment of Li-ion batteries. We developed a standardized single-side indentation test protocol to induce an internal short-circuit. Cell voltage, temperature, and applied compressive force are monitored as a function of time. Each cell is given an observed hazard severity (OHS in five categories) modified from the EUCAR table. Meanwhile a calculated hazard severity (CHS) is obtained solely based on temperature and voltage curves. The calculation formula considers the cell temperature, rate of temperature increase, cell capacity, state of charge (SOC), voltage drop, and voltage drop rate. Each term is assigned with an appropriate weight to scale the calculated score from 0 to100. This method was applied to >100 Li-ion batteries with various SOCs and chemistries, and their OHS and CHS were displayed against SOC. The purpose is to provide battery designers, manufacturers, and end-users a clear comparison of thermal runaway severity of different batteries.
•A standardized single-side indentation test protocol was developed.•Severity scores were calculated from Cell Temperature and voltage vs Time curves.•>100 Li-ion batteries with various SOCs and chemistries were tested.•The calculated scores provide a clear comparison of thermal runaway severity. |
doi_str_mv | 10.1016/j.est.2023.106798 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1923963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352152X23001950</els_id><sourcerecordid>S2352152X23001950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-6d9a9da307fb07d16ae573a329c1cb3176e153abd8efed436f7af124df7952713</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLQ_wFvwvjUf3aTBkxS_sOJFwVvIJhOast2VJK3svzfLikdPM8PM-_LOg9AVJQtKqLjZLSDlBSOMl1lItTpBM8ZrVtGar07_evZ5juYp7QgpoppSJWbo5RXs1nTBmrYdcOjcwYLDeQtxb1ocD535NgNOcIQY8oBNZ9ohhYR9H_EmVKHvcGNyLltIl-jMmzbB_LdeoI-H-_f1U7V5e3xe320qy4XMlXDKKGc4kb4h0lFhoJbccKYstQ2nUkDJbRq3Ag9uyYWXxlO2dF6qmknKL9D15NunHHSyIZcfbN91YLOminEleDmi05GNfUoRvP6KYW_ioCnRIzW904WaHqnpiVrR3E4aKOmPAeJoDl0hEuLo7frwj_oHXo91pQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanically induced thermal runaway severity analysis for Li-ion batteries</title><source>Alma/SFX Local Collection</source><creator>Lin, L.S. ; Li, J.L. ; Fishman, I.M. ; Torres-Castro, L. ; Preger, Y. ; De Angelis, V. ; Lamb, J. ; Zhu, X.Q. ; Allu, S. ; Wang, H.</creator><creatorcontrib>Lin, L.S. ; Li, J.L. ; Fishman, I.M. ; Torres-Castro, L. ; Preger, Y. ; De Angelis, V. ; Lamb, J. ; Zhu, X.Q. ; Allu, S. ; Wang, H. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Thermal runaway is one of the most important safety concerns in the deployment of Li-ion batteries. We developed a standardized single-side indentation test protocol to induce an internal short-circuit. Cell voltage, temperature, and applied compressive force are monitored as a function of time. Each cell is given an observed hazard severity (OHS in five categories) modified from the EUCAR table. Meanwhile a calculated hazard severity (CHS) is obtained solely based on temperature and voltage curves. The calculation formula considers the cell temperature, rate of temperature increase, cell capacity, state of charge (SOC), voltage drop, and voltage drop rate. Each term is assigned with an appropriate weight to scale the calculated score from 0 to100. This method was applied to >100 Li-ion batteries with various SOCs and chemistries, and their OHS and CHS were displayed against SOC. The purpose is to provide battery designers, manufacturers, and end-users a clear comparison of thermal runaway severity of different batteries.
•A standardized single-side indentation test protocol was developed.•Severity scores were calculated from Cell Temperature and voltage vs Time curves.•>100 Li-ion batteries with various SOCs and chemistries were tested.•The calculated scores provide a clear comparison of thermal runaway severity.</description><identifier>ISSN: 2352-152X</identifier><identifier>EISSN: 2352-1538</identifier><identifier>DOI: 10.1016/j.est.2023.106798</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>ENERGY STORAGE ; Internal short-circuit ; Li-ion battery ; Thermal runaway</subject><ispartof>Journal of energy storage, 2023-05, Vol.61 (1), p.106798, Article 106798</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-6d9a9da307fb07d16ae573a329c1cb3176e153abd8efed436f7af124df7952713</citedby><cites>FETCH-LOGICAL-c367t-6d9a9da307fb07d16ae573a329c1cb3176e153abd8efed436f7af124df7952713</cites><orcidid>0000000328414398 ; 0000000287109847 ; 0000000203399219 ; 0000000324269867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1923963$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, L.S.</creatorcontrib><creatorcontrib>Li, J.L.</creatorcontrib><creatorcontrib>Fishman, I.M.</creatorcontrib><creatorcontrib>Torres-Castro, L.</creatorcontrib><creatorcontrib>Preger, Y.</creatorcontrib><creatorcontrib>De Angelis, V.</creatorcontrib><creatorcontrib>Lamb, J.</creatorcontrib><creatorcontrib>Zhu, X.Q.</creatorcontrib><creatorcontrib>Allu, S.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Mechanically induced thermal runaway severity analysis for Li-ion batteries</title><title>Journal of energy storage</title><description>Thermal runaway is one of the most important safety concerns in the deployment of Li-ion batteries. We developed a standardized single-side indentation test protocol to induce an internal short-circuit. Cell voltage, temperature, and applied compressive force are monitored as a function of time. Each cell is given an observed hazard severity (OHS in five categories) modified from the EUCAR table. Meanwhile a calculated hazard severity (CHS) is obtained solely based on temperature and voltage curves. The calculation formula considers the cell temperature, rate of temperature increase, cell capacity, state of charge (SOC), voltage drop, and voltage drop rate. Each term is assigned with an appropriate weight to scale the calculated score from 0 to100. This method was applied to >100 Li-ion batteries with various SOCs and chemistries, and their OHS and CHS were displayed against SOC. The purpose is to provide battery designers, manufacturers, and end-users a clear comparison of thermal runaway severity of different batteries.
•A standardized single-side indentation test protocol was developed.•Severity scores were calculated from Cell Temperature and voltage vs Time curves.•>100 Li-ion batteries with various SOCs and chemistries were tested.•The calculated scores provide a clear comparison of thermal runaway severity.</description><subject>ENERGY STORAGE</subject><subject>Internal short-circuit</subject><subject>Li-ion battery</subject><subject>Thermal runaway</subject><issn>2352-152X</issn><issn>2352-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLQ_wFvwvjUf3aTBkxS_sOJFwVvIJhOast2VJK3svzfLikdPM8PM-_LOg9AVJQtKqLjZLSDlBSOMl1lItTpBM8ZrVtGar07_evZ5juYp7QgpoppSJWbo5RXs1nTBmrYdcOjcwYLDeQtxb1ocD535NgNOcIQY8oBNZ9ohhYR9H_EmVKHvcGNyLltIl-jMmzbB_LdeoI-H-_f1U7V5e3xe320qy4XMlXDKKGc4kb4h0lFhoJbccKYstQ2nUkDJbRq3Ag9uyYWXxlO2dF6qmknKL9D15NunHHSyIZcfbN91YLOminEleDmi05GNfUoRvP6KYW_ioCnRIzW904WaHqnpiVrR3E4aKOmPAeJoDl0hEuLo7frwj_oHXo91pQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Lin, L.S.</creator><creator>Li, J.L.</creator><creator>Fishman, I.M.</creator><creator>Torres-Castro, L.</creator><creator>Preger, Y.</creator><creator>De Angelis, V.</creator><creator>Lamb, J.</creator><creator>Zhu, X.Q.</creator><creator>Allu, S.</creator><creator>Wang, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000328414398</orcidid><orcidid>https://orcid.org/0000000287109847</orcidid><orcidid>https://orcid.org/0000000203399219</orcidid><orcidid>https://orcid.org/0000000324269867</orcidid></search><sort><creationdate>20230501</creationdate><title>Mechanically induced thermal runaway severity analysis for Li-ion batteries</title><author>Lin, L.S. ; Li, J.L. ; Fishman, I.M. ; Torres-Castro, L. ; Preger, Y. ; De Angelis, V. ; Lamb, J. ; Zhu, X.Q. ; Allu, S. ; Wang, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-6d9a9da307fb07d16ae573a329c1cb3176e153abd8efed436f7af124df7952713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ENERGY STORAGE</topic><topic>Internal short-circuit</topic><topic>Li-ion battery</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, L.S.</creatorcontrib><creatorcontrib>Li, J.L.</creatorcontrib><creatorcontrib>Fishman, I.M.</creatorcontrib><creatorcontrib>Torres-Castro, L.</creatorcontrib><creatorcontrib>Preger, Y.</creatorcontrib><creatorcontrib>De Angelis, V.</creatorcontrib><creatorcontrib>Lamb, J.</creatorcontrib><creatorcontrib>Zhu, X.Q.</creatorcontrib><creatorcontrib>Allu, S.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of energy storage</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, L.S.</au><au>Li, J.L.</au><au>Fishman, I.M.</au><au>Torres-Castro, L.</au><au>Preger, Y.</au><au>De Angelis, V.</au><au>Lamb, J.</au><au>Zhu, X.Q.</au><au>Allu, S.</au><au>Wang, H.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically induced thermal runaway severity analysis for Li-ion batteries</atitle><jtitle>Journal of energy storage</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>61</volume><issue>1</issue><spage>106798</spage><pages>106798-</pages><artnum>106798</artnum><issn>2352-152X</issn><eissn>2352-1538</eissn><abstract>Thermal runaway is one of the most important safety concerns in the deployment of Li-ion batteries. We developed a standardized single-side indentation test protocol to induce an internal short-circuit. Cell voltage, temperature, and applied compressive force are monitored as a function of time. Each cell is given an observed hazard severity (OHS in five categories) modified from the EUCAR table. Meanwhile a calculated hazard severity (CHS) is obtained solely based on temperature and voltage curves. The calculation formula considers the cell temperature, rate of temperature increase, cell capacity, state of charge (SOC), voltage drop, and voltage drop rate. Each term is assigned with an appropriate weight to scale the calculated score from 0 to100. This method was applied to >100 Li-ion batteries with various SOCs and chemistries, and their OHS and CHS were displayed against SOC. The purpose is to provide battery designers, manufacturers, and end-users a clear comparison of thermal runaway severity of different batteries.
•A standardized single-side indentation test protocol was developed.•Severity scores were calculated from Cell Temperature and voltage vs Time curves.•>100 Li-ion batteries with various SOCs and chemistries were tested.•The calculated scores provide a clear comparison of thermal runaway severity.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.est.2023.106798</doi><orcidid>https://orcid.org/0000000328414398</orcidid><orcidid>https://orcid.org/0000000287109847</orcidid><orcidid>https://orcid.org/0000000203399219</orcidid><orcidid>https://orcid.org/0000000324269867</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-152X |
ispartof | Journal of energy storage, 2023-05, Vol.61 (1), p.106798, Article 106798 |
issn | 2352-152X 2352-1538 |
language | eng |
recordid | cdi_osti_scitechconnect_1923963 |
source | Alma/SFX Local Collection |
subjects | ENERGY STORAGE Internal short-circuit Li-ion battery Thermal runaway |
title | Mechanically induced thermal runaway severity analysis for Li-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20induced%20thermal%20runaway%20severity%20analysis%20for%20Li-ion%20batteries&rft.jtitle=Journal%20of%20energy%20storage&rft.au=Lin,%20L.S.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2023-05-01&rft.volume=61&rft.issue=1&rft.spage=106798&rft.pages=106798-&rft.artnum=106798&rft.issn=2352-152X&rft.eissn=2352-1538&rft_id=info:doi/10.1016/j.est.2023.106798&rft_dat=%3Celsevier_osti_%3ES2352152X23001950%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2352152X23001950&rfr_iscdi=true |