Radiative Reconnection-powered TeV Flares from the Black Hole Magnetosphere in M87

Active galactic nuclei in general, and the supermassive black hole in M87 in particular, show bright and rapid gamma-ray flares up to energies of 100 GeV and above. For M87, the flares show multiwavelength components, and the variability timescale is comparable to the dynamical time of the event hor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2023-02, Vol.943 (2), p.L29
Hauptverfasser: Hakobyan, H., Ripperda, B., Philippov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L29
container_title Astrophysical journal. Letters
container_volume 943
creator Hakobyan, H.
Ripperda, B.
Philippov, A. A.
description Active galactic nuclei in general, and the supermassive black hole in M87 in particular, show bright and rapid gamma-ray flares up to energies of 100 GeV and above. For M87, the flares show multiwavelength components, and the variability timescale is comparable to the dynamical time of the event horizon, suggesting that the emission may come from a compact region near the nucleus. However, the emission mechanism for these flares is not well understood. Recent high-resolution general-relativistic magnetohydrodynamic simulations show the occurrence of episodic magnetic reconnection events that can power flares near the black hole event horizon. In this work, we analyze the radiative properties of the reconnecting current layer under the extreme plasma conditions applicable to the black hole in M87 from first principles. We show that abundant pair production is expected in the vicinity of the reconnection layer, to the extent that the produced secondary pair plasma dominates the reconnection dynamics. Using analytic estimates backed by two-dimensional particle-in-cell simulations, we demonstrate that in the presence of strong synchrotron cooling, reconnection can produce a hard power-law distribution of pair plasma imprinted in the outgoing synchrotron (up to a few tens of MeV) and the inverse-Compton signal (up to TeV). We produce synthetic radiation spectra from our simulations, which can be directly compared with the results of future multiwavelength observations of M87* flares.
doi_str_mv 10.3847/2041-8213/acb264
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1923576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4f0ff75cbd9943d68b5144d058ee650d</doaj_id><sourcerecordid>2773879824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8295557c7cb9a186faa33f9015ba2e20be3d057c87a1f1d6ff8e03cf9754fc13</originalsourceid><addsrcrecordid>eNp1kc9vFCEUxydGE2v17pFo4sm1_BzgqI39kWxjstl4JQw8uqzTYQRa439f1mnWi54gj8_75D2-XfeW4E9McXlGMScrRQk7s26gPX_WnRxLz493LF52r0rZY0xxT9RJt9lYH22ND4A24NI0gasxTas5_YIMHm3hO7oYbYaCQk53qO4AfRmt-4Gu0gjoxt5OUFOZd41GcUI3Sr7uXgQ7FnjzdJ5224uv2_Or1frb5fX55_XKcclrG0YLIaSTbtCWqD5Yy1jQmIjBUqB4AOZxe1fSkkB8H4ICzFzQUvDgCDvtrhetT3Zv5hzvbP5tko3mTyHlW2NzjW4EwwMOQQo3eK05870aBOG82RVAL7BvrneLK5UaTXGxgts9_YYhmjIh-wa9X6A5p5_3UKrZp_s8tRUNlZIpqRXljcIL5XIqJUM4jkawOSRlDlGYQyxmSaq1fFhaYpr_Ou28H00b11CzptrMPjTw4z_A_3ofAadcn6g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773879824</pqid></control><display><type>article</type><title>Radiative Reconnection-powered TeV Flares from the Black Hole Magnetosphere in M87</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><creator>Hakobyan, H. ; Ripperda, B. ; Philippov, A. A.</creator><creatorcontrib>Hakobyan, H. ; Ripperda, B. ; Philippov, A. A. ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Active galactic nuclei in general, and the supermassive black hole in M87 in particular, show bright and rapid gamma-ray flares up to energies of 100 GeV and above. For M87, the flares show multiwavelength components, and the variability timescale is comparable to the dynamical time of the event horizon, suggesting that the emission may come from a compact region near the nucleus. However, the emission mechanism for these flares is not well understood. Recent high-resolution general-relativistic magnetohydrodynamic simulations show the occurrence of episodic magnetic reconnection events that can power flares near the black hole event horizon. In this work, we analyze the radiative properties of the reconnecting current layer under the extreme plasma conditions applicable to the black hole in M87 from first principles. We show that abundant pair production is expected in the vicinity of the reconnection layer, to the extent that the produced secondary pair plasma dominates the reconnection dynamics. Using analytic estimates backed by two-dimensional particle-in-cell simulations, we demonstrate that in the presence of strong synchrotron cooling, reconnection can produce a hard power-law distribution of pair plasma imprinted in the outgoing synchrotron (up to a few tens of MeV) and the inverse-Compton signal (up to TeV). We produce synthetic radiation spectra from our simulations, which can be directly compared with the results of future multiwavelength observations of M87* flares.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/acb264</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Active galactic nuclei ; ASTRONOMY AND ASTROPHYSICS ; Black hole physics ; Black holes ; Elliptical galaxies ; Emission ; Event horizon ; First principles ; Flares ; Fluid flow ; Gamma rays ; Magnetic reconnection ; Magnetohydrodynamic simulation ; Magnetospheres ; Pair production ; Plasma astrophysics ; Plasma physics ; Radiation ; Radiation spectra ; Radiative processes ; Simulation ; Special relativity ; Supermassive black holes ; Synchrotrons ; Two dimensional analysis</subject><ispartof>Astrophysical journal. Letters, 2023-02, Vol.943 (2), p.L29</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8295557c7cb9a186faa33f9015ba2e20be3d057c87a1f1d6ff8e03cf9754fc13</citedby><cites>FETCH-LOGICAL-c474t-8295557c7cb9a186faa33f9015ba2e20be3d057c87a1f1d6ff8e03cf9754fc13</cites><orcidid>0000-0001-7801-0362 ; 0000-0001-8939-6862 ; 0000-0002-7301-3908 ; 0000000189396862 ; 0000000273013908 ; 0000000178010362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/acb264/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2101,27923,27924,38867,38889,53839,53866</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1923576$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hakobyan, H.</creatorcontrib><creatorcontrib>Ripperda, B.</creatorcontrib><creatorcontrib>Philippov, A. A.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Radiative Reconnection-powered TeV Flares from the Black Hole Magnetosphere in M87</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Active galactic nuclei in general, and the supermassive black hole in M87 in particular, show bright and rapid gamma-ray flares up to energies of 100 GeV and above. For M87, the flares show multiwavelength components, and the variability timescale is comparable to the dynamical time of the event horizon, suggesting that the emission may come from a compact region near the nucleus. However, the emission mechanism for these flares is not well understood. Recent high-resolution general-relativistic magnetohydrodynamic simulations show the occurrence of episodic magnetic reconnection events that can power flares near the black hole event horizon. In this work, we analyze the radiative properties of the reconnecting current layer under the extreme plasma conditions applicable to the black hole in M87 from first principles. We show that abundant pair production is expected in the vicinity of the reconnection layer, to the extent that the produced secondary pair plasma dominates the reconnection dynamics. Using analytic estimates backed by two-dimensional particle-in-cell simulations, we demonstrate that in the presence of strong synchrotron cooling, reconnection can produce a hard power-law distribution of pair plasma imprinted in the outgoing synchrotron (up to a few tens of MeV) and the inverse-Compton signal (up to TeV). We produce synthetic radiation spectra from our simulations, which can be directly compared with the results of future multiwavelength observations of M87* flares.</description><subject>Active galactic nuclei</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Black hole physics</subject><subject>Black holes</subject><subject>Elliptical galaxies</subject><subject>Emission</subject><subject>Event horizon</subject><subject>First principles</subject><subject>Flares</subject><subject>Fluid flow</subject><subject>Gamma rays</subject><subject>Magnetic reconnection</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetospheres</subject><subject>Pair production</subject><subject>Plasma astrophysics</subject><subject>Plasma physics</subject><subject>Radiation</subject><subject>Radiation spectra</subject><subject>Radiative processes</subject><subject>Simulation</subject><subject>Special relativity</subject><subject>Supermassive black holes</subject><subject>Synchrotrons</subject><subject>Two dimensional analysis</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc9vFCEUxydGE2v17pFo4sm1_BzgqI39kWxjstl4JQw8uqzTYQRa439f1mnWi54gj8_75D2-XfeW4E9McXlGMScrRQk7s26gPX_WnRxLz493LF52r0rZY0xxT9RJt9lYH22ND4A24NI0gasxTas5_YIMHm3hO7oYbYaCQk53qO4AfRmt-4Gu0gjoxt5OUFOZd41GcUI3Sr7uXgQ7FnjzdJ5224uv2_Or1frb5fX55_XKcclrG0YLIaSTbtCWqD5Yy1jQmIjBUqB4AOZxe1fSkkB8H4ICzFzQUvDgCDvtrhetT3Zv5hzvbP5tko3mTyHlW2NzjW4EwwMOQQo3eK05870aBOG82RVAL7BvrneLK5UaTXGxgts9_YYhmjIh-wa9X6A5p5_3UKrZp_s8tRUNlZIpqRXljcIL5XIqJUM4jkawOSRlDlGYQyxmSaq1fFhaYpr_Ou28H00b11CzptrMPjTw4z_A_3ofAadcn6g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Hakobyan, H.</creator><creator>Ripperda, B.</creator><creator>Philippov, A. A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7801-0362</orcidid><orcidid>https://orcid.org/0000-0001-8939-6862</orcidid><orcidid>https://orcid.org/0000-0002-7301-3908</orcidid><orcidid>https://orcid.org/0000000189396862</orcidid><orcidid>https://orcid.org/0000000273013908</orcidid><orcidid>https://orcid.org/0000000178010362</orcidid></search><sort><creationdate>20230201</creationdate><title>Radiative Reconnection-powered TeV Flares from the Black Hole Magnetosphere in M87</title><author>Hakobyan, H. ; Ripperda, B. ; Philippov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8295557c7cb9a186faa33f9015ba2e20be3d057c87a1f1d6ff8e03cf9754fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active galactic nuclei</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Black hole physics</topic><topic>Black holes</topic><topic>Elliptical galaxies</topic><topic>Emission</topic><topic>Event horizon</topic><topic>First principles</topic><topic>Flares</topic><topic>Fluid flow</topic><topic>Gamma rays</topic><topic>Magnetic reconnection</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetospheres</topic><topic>Pair production</topic><topic>Plasma astrophysics</topic><topic>Plasma physics</topic><topic>Radiation</topic><topic>Radiation spectra</topic><topic>Radiative processes</topic><topic>Simulation</topic><topic>Special relativity</topic><topic>Supermassive black holes</topic><topic>Synchrotrons</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakobyan, H.</creatorcontrib><creatorcontrib>Ripperda, B.</creatorcontrib><creatorcontrib>Philippov, A. A.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakobyan, H.</au><au>Ripperda, B.</au><au>Philippov, A. A.</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative Reconnection-powered TeV Flares from the Black Hole Magnetosphere in M87</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>943</volume><issue>2</issue><spage>L29</spage><pages>L29-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Active galactic nuclei in general, and the supermassive black hole in M87 in particular, show bright and rapid gamma-ray flares up to energies of 100 GeV and above. For M87, the flares show multiwavelength components, and the variability timescale is comparable to the dynamical time of the event horizon, suggesting that the emission may come from a compact region near the nucleus. However, the emission mechanism for these flares is not well understood. Recent high-resolution general-relativistic magnetohydrodynamic simulations show the occurrence of episodic magnetic reconnection events that can power flares near the black hole event horizon. In this work, we analyze the radiative properties of the reconnecting current layer under the extreme plasma conditions applicable to the black hole in M87 from first principles. We show that abundant pair production is expected in the vicinity of the reconnection layer, to the extent that the produced secondary pair plasma dominates the reconnection dynamics. Using analytic estimates backed by two-dimensional particle-in-cell simulations, we demonstrate that in the presence of strong synchrotron cooling, reconnection can produce a hard power-law distribution of pair plasma imprinted in the outgoing synchrotron (up to a few tens of MeV) and the inverse-Compton signal (up to TeV). We produce synthetic radiation spectra from our simulations, which can be directly compared with the results of future multiwavelength observations of M87* flares.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/acb264</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7801-0362</orcidid><orcidid>https://orcid.org/0000-0001-8939-6862</orcidid><orcidid>https://orcid.org/0000-0002-7301-3908</orcidid><orcidid>https://orcid.org/0000000189396862</orcidid><orcidid>https://orcid.org/0000000273013908</orcidid><orcidid>https://orcid.org/0000000178010362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2023-02, Vol.943 (2), p.L29
issn 2041-8205
2041-8213
language eng
recordid cdi_osti_scitechconnect_1923576
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection
subjects Active galactic nuclei
ASTRONOMY AND ASTROPHYSICS
Black hole physics
Black holes
Elliptical galaxies
Emission
Event horizon
First principles
Flares
Fluid flow
Gamma rays
Magnetic reconnection
Magnetohydrodynamic simulation
Magnetospheres
Pair production
Plasma astrophysics
Plasma physics
Radiation
Radiation spectra
Radiative processes
Simulation
Special relativity
Supermassive black holes
Synchrotrons
Two dimensional analysis
title Radiative Reconnection-powered TeV Flares from the Black Hole Magnetosphere in M87
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20Reconnection-powered%20TeV%20Flares%20from%20the%20Black%20Hole%20Magnetosphere%20in%20M87&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Hakobyan,%20H.&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2023-02-01&rft.volume=943&rft.issue=2&rft.spage=L29&rft.pages=L29-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/acb264&rft_dat=%3Cproquest_osti_%3E2773879824%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773879824&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4f0ff75cbd9943d68b5144d058ee650d&rfr_iscdi=true