Role of Magnetic Defects in Tuning Ground States of Magnetic Topological Insulators

Magnetic defects play an important, but poorly understood, role in magnetic topological insulators (TIs). For example, topological surface transport and bulk magnetic properties are controlled by magnetic defects in Bi2Se3‐based dilute ferromagnetic (FM) TIs and MnBi2Te4 (MBT)‐based antiferromagneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-05, Vol.35 (21), p.e2209951-n/a
Hauptverfasser: Islam, Farhan, Lee, Yongbin, Pajerowski, Daniel M., Oh, JinSu, Tian, Wei, Zhou, Lin, Yan, Jiaqiang, Ke, Liqin, McQueeney, Robert J., Vaknin, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e2209951
container_title Advanced materials (Weinheim)
container_volume 35
creator Islam, Farhan
Lee, Yongbin
Pajerowski, Daniel M.
Oh, JinSu
Tian, Wei
Zhou, Lin
Yan, Jiaqiang
Ke, Liqin
McQueeney, Robert J.
Vaknin, David
description Magnetic defects play an important, but poorly understood, role in magnetic topological insulators (TIs). For example, topological surface transport and bulk magnetic properties are controlled by magnetic defects in Bi2Se3‐based dilute ferromagnetic (FM) TIs and MnBi2Te4 (MBT)‐based antiferromagnetic (AFM) TIs. Despite its nascent ferromagnetism, the inelastic neutron scattering data show that a fraction of the Mn defects in Sb2Te3 form strong AFM dimer singlets within a quintuple block. The AFM superexchange coupling occurs via Mn–Te–Mn linear bonds and is identical to the AFM coupling between antisite defects and the FM Mn layer in MBT, establishing common interactions in the two materials classes. It is also found that the FM correlations in (Sb1−xMnx)2Te3 are likely driven by magnetic defects in adjacent quintuple blocks across the van der Waals gap. In addition to providing answers to long‐standing questions about the evolution of FM order in dilute TI, these results also show that the evolution of global magnetic order from AFM to FM in Sb‐substituted MBT is controlled by defect engineering of the intrablock and interblock coupling. Inelastic neutron scattering measurements reveal the formation of linear Mn–Te–Mn antiferromagnetic dimers in Mn‐doped Sb2Te3, following the Goodenough–Kanamori superexchange rule. Although the system is magnetically dilute, the experiments identify ferromagnetic dimers and correlations in the interblock across the van der Waals gap. These interactions explain the role of defects in tuning ground‐states in magnetic topological insulators.
doi_str_mv 10.1002/adma.202209951
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1923461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773126294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4401-9e4659e95b5e3301b9e06de1386699ce27328b35f419a5ae2f8afb77cbf57d033</originalsourceid><addsrcrecordid>eNqF0UFP3DAQBWCrKirL0ivHKmovXLKM7djJHFdQKBIICZaz5TiTxShrb-NEFf--WS1QtZeefPn8NDOPsRMOCw4gzmyzsQsBQgCi4h_YjCvB8wJQfWQzQKly1EV1yI5SegYA1KA_sUOpS8kV5zP2cB87ymKb3dp1oMG77IJackPKfMhWY_BhnV31cQxN9jDYgdJfdhW3sYtr72yXXYc0dnaIfTpmB63tEn1-fefs8fL76vxHfnN3dX2-vMldUQDPkQqtkFDViqQEXiOBbojLSmtER6KUoqqlaguOVlkSbWXbuixd3aqyASnn7Os-N6bBm-T8QO7JxRCm-Q1HIQvNJ3S6R9s-_hwpDWbjk6Ous4HimIwop1MILbCY6Ld_6HMc-zCtYETFK4WoS5jUYq9cH1PqqTXb3m9s_2I4mF0nZteJee9k-vDlNXasN9S887cSJoB78Mt39PKfOLO8uF3-Cf8NvKiWKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818599670</pqid></control><display><type>article</type><title>Role of Magnetic Defects in Tuning Ground States of Magnetic Topological Insulators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Islam, Farhan ; Lee, Yongbin ; Pajerowski, Daniel M. ; Oh, JinSu ; Tian, Wei ; Zhou, Lin ; Yan, Jiaqiang ; Ke, Liqin ; McQueeney, Robert J. ; Vaknin, David</creator><creatorcontrib>Islam, Farhan ; Lee, Yongbin ; Pajerowski, Daniel M. ; Oh, JinSu ; Tian, Wei ; Zhou, Lin ; Yan, Jiaqiang ; Ke, Liqin ; McQueeney, Robert J. ; Vaknin, David ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS) ; Ames Lab., Ames, IA (United States)</creatorcontrib><description>Magnetic defects play an important, but poorly understood, role in magnetic topological insulators (TIs). For example, topological surface transport and bulk magnetic properties are controlled by magnetic defects in Bi2Se3‐based dilute ferromagnetic (FM) TIs and MnBi2Te4 (MBT)‐based antiferromagnetic (AFM) TIs. Despite its nascent ferromagnetism, the inelastic neutron scattering data show that a fraction of the Mn defects in Sb2Te3 form strong AFM dimer singlets within a quintuple block. The AFM superexchange coupling occurs via Mn–Te–Mn linear bonds and is identical to the AFM coupling between antisite defects and the FM Mn layer in MBT, establishing common interactions in the two materials classes. It is also found that the FM correlations in (Sb1−xMnx)2Te3 are likely driven by magnetic defects in adjacent quintuple blocks across the van der Waals gap. In addition to providing answers to long‐standing questions about the evolution of FM order in dilute TI, these results also show that the evolution of global magnetic order from AFM to FM in Sb‐substituted MBT is controlled by defect engineering of the intrablock and interblock coupling. Inelastic neutron scattering measurements reveal the formation of linear Mn–Te–Mn antiferromagnetic dimers in Mn‐doped Sb2Te3, following the Goodenough–Kanamori superexchange rule. Although the system is magnetically dilute, the experiments identify ferromagnetic dimers and correlations in the interblock across the van der Waals gap. These interactions explain the role of defects in tuning ground‐states in magnetic topological insulators.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202209951</identifier><identifier>PMID: 36731511</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antiferromagnetism ; Antisite defects ; Coupling ; Dilution ; Evolution ; ferromagnetic correlation ; Ferromagnetism ; Inelastic scattering ; localized dimer formation ; magnetic inelastic neutron scattering ; Magnetic properties ; magnetic topological insulators ; Materials science ; Neutron scattering ; Neutrons ; Topological insulators</subject><ispartof>Advanced materials (Weinheim), 2023-05, Vol.35 (21), p.e2209951-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4401-9e4659e95b5e3301b9e06de1386699ce27328b35f419a5ae2f8afb77cbf57d033</citedby><cites>FETCH-LOGICAL-c4401-9e4659e95b5e3301b9e06de1386699ce27328b35f419a5ae2f8afb77cbf57d033</cites><orcidid>0000-0003-3890-2379 ; 0000-0002-0899-9248 ; 0000-0003-2286-6510 ; 0000-0001-5130-9006 ; 0000-0003-0718-5602 ; 0000-0001-6625-4706 ; 0000-0001-6249-0779 ; 0000000208999248 ; 0000000162490779 ; 0000000338902379 ; 0000000151309006 ; 0000000166254706 ; 0000000322866510 ; 0000000307185602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202209951$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202209951$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36731511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1923461$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Islam, Farhan</creatorcontrib><creatorcontrib>Lee, Yongbin</creatorcontrib><creatorcontrib>Pajerowski, Daniel M.</creatorcontrib><creatorcontrib>Oh, JinSu</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Ke, Liqin</creatorcontrib><creatorcontrib>McQueeney, Robert J.</creatorcontrib><creatorcontrib>Vaknin, David</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><title>Role of Magnetic Defects in Tuning Ground States of Magnetic Topological Insulators</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Magnetic defects play an important, but poorly understood, role in magnetic topological insulators (TIs). For example, topological surface transport and bulk magnetic properties are controlled by magnetic defects in Bi2Se3‐based dilute ferromagnetic (FM) TIs and MnBi2Te4 (MBT)‐based antiferromagnetic (AFM) TIs. Despite its nascent ferromagnetism, the inelastic neutron scattering data show that a fraction of the Mn defects in Sb2Te3 form strong AFM dimer singlets within a quintuple block. The AFM superexchange coupling occurs via Mn–Te–Mn linear bonds and is identical to the AFM coupling between antisite defects and the FM Mn layer in MBT, establishing common interactions in the two materials classes. It is also found that the FM correlations in (Sb1−xMnx)2Te3 are likely driven by magnetic defects in adjacent quintuple blocks across the van der Waals gap. In addition to providing answers to long‐standing questions about the evolution of FM order in dilute TI, these results also show that the evolution of global magnetic order from AFM to FM in Sb‐substituted MBT is controlled by defect engineering of the intrablock and interblock coupling. Inelastic neutron scattering measurements reveal the formation of linear Mn–Te–Mn antiferromagnetic dimers in Mn‐doped Sb2Te3, following the Goodenough–Kanamori superexchange rule. Although the system is magnetically dilute, the experiments identify ferromagnetic dimers and correlations in the interblock across the van der Waals gap. These interactions explain the role of defects in tuning ground‐states in magnetic topological insulators.</description><subject>Antiferromagnetism</subject><subject>Antisite defects</subject><subject>Coupling</subject><subject>Dilution</subject><subject>Evolution</subject><subject>ferromagnetic correlation</subject><subject>Ferromagnetism</subject><subject>Inelastic scattering</subject><subject>localized dimer formation</subject><subject>magnetic inelastic neutron scattering</subject><subject>Magnetic properties</subject><subject>magnetic topological insulators</subject><subject>Materials science</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Topological insulators</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0UFP3DAQBWCrKirL0ivHKmovXLKM7djJHFdQKBIICZaz5TiTxShrb-NEFf--WS1QtZeefPn8NDOPsRMOCw4gzmyzsQsBQgCi4h_YjCvB8wJQfWQzQKly1EV1yI5SegYA1KA_sUOpS8kV5zP2cB87ymKb3dp1oMG77IJackPKfMhWY_BhnV31cQxN9jDYgdJfdhW3sYtr72yXXYc0dnaIfTpmB63tEn1-fefs8fL76vxHfnN3dX2-vMldUQDPkQqtkFDViqQEXiOBbojLSmtER6KUoqqlaguOVlkSbWXbuixd3aqyASnn7Os-N6bBm-T8QO7JxRCm-Q1HIQvNJ3S6R9s-_hwpDWbjk6Ous4HimIwop1MILbCY6Ld_6HMc-zCtYETFK4WoS5jUYq9cH1PqqTXb3m9s_2I4mF0nZteJee9k-vDlNXasN9S887cSJoB78Mt39PKfOLO8uF3-Cf8NvKiWKg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Islam, Farhan</creator><creator>Lee, Yongbin</creator><creator>Pajerowski, Daniel M.</creator><creator>Oh, JinSu</creator><creator>Tian, Wei</creator><creator>Zhou, Lin</creator><creator>Yan, Jiaqiang</creator><creator>Ke, Liqin</creator><creator>McQueeney, Robert J.</creator><creator>Vaknin, David</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3890-2379</orcidid><orcidid>https://orcid.org/0000-0002-0899-9248</orcidid><orcidid>https://orcid.org/0000-0003-2286-6510</orcidid><orcidid>https://orcid.org/0000-0001-5130-9006</orcidid><orcidid>https://orcid.org/0000-0003-0718-5602</orcidid><orcidid>https://orcid.org/0000-0001-6625-4706</orcidid><orcidid>https://orcid.org/0000-0001-6249-0779</orcidid><orcidid>https://orcid.org/0000000208999248</orcidid><orcidid>https://orcid.org/0000000162490779</orcidid><orcidid>https://orcid.org/0000000338902379</orcidid><orcidid>https://orcid.org/0000000151309006</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid><orcidid>https://orcid.org/0000000322866510</orcidid><orcidid>https://orcid.org/0000000307185602</orcidid></search><sort><creationdate>20230501</creationdate><title>Role of Magnetic Defects in Tuning Ground States of Magnetic Topological Insulators</title><author>Islam, Farhan ; Lee, Yongbin ; Pajerowski, Daniel M. ; Oh, JinSu ; Tian, Wei ; Zhou, Lin ; Yan, Jiaqiang ; Ke, Liqin ; McQueeney, Robert J. ; Vaknin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4401-9e4659e95b5e3301b9e06de1386699ce27328b35f419a5ae2f8afb77cbf57d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiferromagnetism</topic><topic>Antisite defects</topic><topic>Coupling</topic><topic>Dilution</topic><topic>Evolution</topic><topic>ferromagnetic correlation</topic><topic>Ferromagnetism</topic><topic>Inelastic scattering</topic><topic>localized dimer formation</topic><topic>magnetic inelastic neutron scattering</topic><topic>Magnetic properties</topic><topic>magnetic topological insulators</topic><topic>Materials science</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Farhan</creatorcontrib><creatorcontrib>Lee, Yongbin</creatorcontrib><creatorcontrib>Pajerowski, Daniel M.</creatorcontrib><creatorcontrib>Oh, JinSu</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Ke, Liqin</creatorcontrib><creatorcontrib>McQueeney, Robert J.</creatorcontrib><creatorcontrib>Vaknin, David</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Farhan</au><au>Lee, Yongbin</au><au>Pajerowski, Daniel M.</au><au>Oh, JinSu</au><au>Tian, Wei</au><au>Zhou, Lin</au><au>Yan, Jiaqiang</au><au>Ke, Liqin</au><au>McQueeney, Robert J.</au><au>Vaknin, David</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</aucorp><aucorp>Ames Lab., Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Magnetic Defects in Tuning Ground States of Magnetic Topological Insulators</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>21</issue><spage>e2209951</spage><epage>n/a</epage><pages>e2209951-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Magnetic defects play an important, but poorly understood, role in magnetic topological insulators (TIs). For example, topological surface transport and bulk magnetic properties are controlled by magnetic defects in Bi2Se3‐based dilute ferromagnetic (FM) TIs and MnBi2Te4 (MBT)‐based antiferromagnetic (AFM) TIs. Despite its nascent ferromagnetism, the inelastic neutron scattering data show that a fraction of the Mn defects in Sb2Te3 form strong AFM dimer singlets within a quintuple block. The AFM superexchange coupling occurs via Mn–Te–Mn linear bonds and is identical to the AFM coupling between antisite defects and the FM Mn layer in MBT, establishing common interactions in the two materials classes. It is also found that the FM correlations in (Sb1−xMnx)2Te3 are likely driven by magnetic defects in adjacent quintuple blocks across the van der Waals gap. In addition to providing answers to long‐standing questions about the evolution of FM order in dilute TI, these results also show that the evolution of global magnetic order from AFM to FM in Sb‐substituted MBT is controlled by defect engineering of the intrablock and interblock coupling. Inelastic neutron scattering measurements reveal the formation of linear Mn–Te–Mn antiferromagnetic dimers in Mn‐doped Sb2Te3, following the Goodenough–Kanamori superexchange rule. Although the system is magnetically dilute, the experiments identify ferromagnetic dimers and correlations in the interblock across the van der Waals gap. These interactions explain the role of defects in tuning ground‐states in magnetic topological insulators.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36731511</pmid><doi>10.1002/adma.202209951</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3890-2379</orcidid><orcidid>https://orcid.org/0000-0002-0899-9248</orcidid><orcidid>https://orcid.org/0000-0003-2286-6510</orcidid><orcidid>https://orcid.org/0000-0001-5130-9006</orcidid><orcidid>https://orcid.org/0000-0003-0718-5602</orcidid><orcidid>https://orcid.org/0000-0001-6625-4706</orcidid><orcidid>https://orcid.org/0000-0001-6249-0779</orcidid><orcidid>https://orcid.org/0000000208999248</orcidid><orcidid>https://orcid.org/0000000162490779</orcidid><orcidid>https://orcid.org/0000000338902379</orcidid><orcidid>https://orcid.org/0000000151309006</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid><orcidid>https://orcid.org/0000000322866510</orcidid><orcidid>https://orcid.org/0000000307185602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-05, Vol.35 (21), p.e2209951-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1923461
source Wiley Online Library Journals Frontfile Complete
subjects Antiferromagnetism
Antisite defects
Coupling
Dilution
Evolution
ferromagnetic correlation
Ferromagnetism
Inelastic scattering
localized dimer formation
magnetic inelastic neutron scattering
Magnetic properties
magnetic topological insulators
Materials science
Neutron scattering
Neutrons
Topological insulators
title Role of Magnetic Defects in Tuning Ground States of Magnetic Topological Insulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Magnetic%20Defects%20in%20Tuning%20Ground%20States%20of%20Magnetic%20Topological%20Insulators&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Islam,%20Farhan&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Spallation%20Neutron%20Source%20(SNS)&rft.date=2023-05-01&rft.volume=35&rft.issue=21&rft.spage=e2209951&rft.epage=n/a&rft.pages=e2209951-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202209951&rft_dat=%3Cproquest_osti_%3E2773126294%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818599670&rft_id=info:pmid/36731511&rfr_iscdi=true