Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization

Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2023-07, Vol.44 (4), p.2257-2277
Hauptverfasser: Shi, Yang, Wang, Zhenbo, LaClair, Tim J., Wang, Chieh (Ross), Shao, Yunli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2277
container_issue 4
container_start_page 2257
container_title Optimal control applications & methods
container_volume 44
creator Shi, Yang
Wang, Zhenbo
LaClair, Tim J.
Wang, Chieh (Ross)
Shao, Yunli
description Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interactions and nonlinear vehicle dynamics is still a daunting task. In this paper, we develop a novel speed control method for CAVs to produce optimal speed profiles that minimize the fuel consumption and avoid idling at signalized intersections. To this end, an optimal control problem is formulated using the information of the upcoming traffic signal to adapt vehicles' speeds to avoid frequent stop‐and‐go driving patterns. By applying the pseudospectral discretization method and the sequential convex programming method, the computational efficiency is greatly improved, enabling potential real‐time on‐vehicle applications. In addition, the algorithm is implemented under a model predictive control framework to ensure online control with instant response for collision avoidance and robust vehicle coordination. The proposed algorithm is verified through numerical simulations of three different traffic scenarios. The convergence and accuracy of the proposed approach are demonstrated by comparing with a popular nonlinear solver. Furthermore, the benefit of the proposed method in both traffic mobility and fuel efficiency is validated using the speed profile determined from a traffic following model in a simulation software as the baseline.
doi_str_mv 10.1002/oca.2978
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1923235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836973618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3208-4d1169ede0e35692aed016f5ebf9eb1e99b1866a72672cc0a1153342ea715ca53</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcYQINmxSPHb-vKwq_qRKlRCsLdeZtK7SONhJoV1xBM7ISUgIW1YzGn3vad4j5BLoBChlt1arCRNpdkRGQIUIIYbomIwoRDxkNEtPyZn3G0ppCpyNyOYZVfn9-dWYLQbaVo2zZWCLfq1QN5gHO1wbXaIPTBV4s6pUaQ7dWVvnTG6dD1pvqlVQe2xz6-tO5FTZ63f4Edi6MzYH1RhbnZOTQpUeL_7mmLze373MHsP54uFpNp2HmncPhlEOkAjMkSKPE8EU5hSSIsZlIXAJKMQSsiRRKUtSpjVVADHnEUOVQqxVzMfkavC1vjHSa9OgXv_lkSAYZ7yHrgeodvatRd_IjW1dF85LlvFEpDyBrKNuBko7673DQtbObJXbS6Cyr1t2dcu-7g4NB_TdlLj_l5OL2fSX_wEtI4M1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836973618</pqid></control><display><type>article</type><title>Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Yang ; Wang, Zhenbo ; LaClair, Tim J. ; Wang, Chieh (Ross) ; Shao, Yunli</creator><creatorcontrib>Shi, Yang ; Wang, Zhenbo ; LaClair, Tim J. ; Wang, Chieh (Ross) ; Shao, Yunli ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interactions and nonlinear vehicle dynamics is still a daunting task. In this paper, we develop a novel speed control method for CAVs to produce optimal speed profiles that minimize the fuel consumption and avoid idling at signalized intersections. To this end, an optimal control problem is formulated using the information of the upcoming traffic signal to adapt vehicles' speeds to avoid frequent stop‐and‐go driving patterns. By applying the pseudospectral discretization method and the sequential convex programming method, the computational efficiency is greatly improved, enabling potential real‐time on‐vehicle applications. In addition, the algorithm is implemented under a model predictive control framework to ensure online control with instant response for collision avoidance and robust vehicle coordination. The proposed algorithm is verified through numerical simulations of three different traffic scenarios. The convergence and accuracy of the proposed approach are demonstrated by comparing with a popular nonlinear solver. Furthermore, the benefit of the proposed method in both traffic mobility and fuel efficiency is validated using the speed profile determined from a traffic following model in a simulation software as the baseline.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2978</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Collision avoidance ; Computational geometry ; Computer simulation ; Connected and automated vehicles ; Control algorithms ; Control methods ; Convex optimization ; Convexity ; Ecodriving ; eco‐driving ; Energy consumption ; ENGINEERING ; Fuel consumption ; Idling ; Mathematical programming ; Model predictive control ; Nonlinear dynamics ; Optimal control ; Optimization ; Predictive control ; Robustness (mathematics) ; Speed control ; Traffic information ; Traffic models ; Traffic signals ; Traffic speed ; Transportation corridors ; Transportation systems ; Vehicles</subject><ispartof>Optimal control applications &amp; methods, 2023-07, Vol.44 (4), p.2257-2277</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3208-4d1169ede0e35692aed016f5ebf9eb1e99b1866a72672cc0a1153342ea715ca53</citedby><cites>FETCH-LOGICAL-c3208-4d1169ede0e35692aed016f5ebf9eb1e99b1866a72672cc0a1153342ea715ca53</cites><orcidid>0000-0002-8979-9765 ; 0000000289799765 ; 0000000180737683 ; 0000000241913098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2978$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2978$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1923235$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yang</creatorcontrib><creatorcontrib>Wang, Zhenbo</creatorcontrib><creatorcontrib>LaClair, Tim J.</creatorcontrib><creatorcontrib>Wang, Chieh (Ross)</creatorcontrib><creatorcontrib>Shao, Yunli</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization</title><title>Optimal control applications &amp; methods</title><description>Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interactions and nonlinear vehicle dynamics is still a daunting task. In this paper, we develop a novel speed control method for CAVs to produce optimal speed profiles that minimize the fuel consumption and avoid idling at signalized intersections. To this end, an optimal control problem is formulated using the information of the upcoming traffic signal to adapt vehicles' speeds to avoid frequent stop‐and‐go driving patterns. By applying the pseudospectral discretization method and the sequential convex programming method, the computational efficiency is greatly improved, enabling potential real‐time on‐vehicle applications. In addition, the algorithm is implemented under a model predictive control framework to ensure online control with instant response for collision avoidance and robust vehicle coordination. The proposed algorithm is verified through numerical simulations of three different traffic scenarios. The convergence and accuracy of the proposed approach are demonstrated by comparing with a popular nonlinear solver. Furthermore, the benefit of the proposed method in both traffic mobility and fuel efficiency is validated using the speed profile determined from a traffic following model in a simulation software as the baseline.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Computational geometry</subject><subject>Computer simulation</subject><subject>Connected and automated vehicles</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Ecodriving</subject><subject>eco‐driving</subject><subject>Energy consumption</subject><subject>ENGINEERING</subject><subject>Fuel consumption</subject><subject>Idling</subject><subject>Mathematical programming</subject><subject>Model predictive control</subject><subject>Nonlinear dynamics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Robustness (mathematics)</subject><subject>Speed control</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Traffic signals</subject><subject>Traffic speed</subject><subject>Transportation corridors</subject><subject>Transportation systems</subject><subject>Vehicles</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgcYQINmxSPHb-vKwq_qRKlRCsLdeZtK7SONhJoV1xBM7ISUgIW1YzGn3vad4j5BLoBChlt1arCRNpdkRGQIUIIYbomIwoRDxkNEtPyZn3G0ppCpyNyOYZVfn9-dWYLQbaVo2zZWCLfq1QN5gHO1wbXaIPTBV4s6pUaQ7dWVvnTG6dD1pvqlVQe2xz6-tO5FTZ63f4Edi6MzYH1RhbnZOTQpUeL_7mmLze373MHsP54uFpNp2HmncPhlEOkAjMkSKPE8EU5hSSIsZlIXAJKMQSsiRRKUtSpjVVADHnEUOVQqxVzMfkavC1vjHSa9OgXv_lkSAYZ7yHrgeodvatRd_IjW1dF85LlvFEpDyBrKNuBko7673DQtbObJXbS6Cyr1t2dcu-7g4NB_TdlLj_l5OL2fSX_wEtI4M1</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Shi, Yang</creator><creator>Wang, Zhenbo</creator><creator>LaClair, Tim J.</creator><creator>Wang, Chieh (Ross)</creator><creator>Shao, Yunli</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8979-9765</orcidid><orcidid>https://orcid.org/0000000289799765</orcidid><orcidid>https://orcid.org/0000000180737683</orcidid><orcidid>https://orcid.org/0000000241913098</orcidid></search><sort><creationdate>202307</creationdate><title>Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization</title><author>Shi, Yang ; Wang, Zhenbo ; LaClair, Tim J. ; Wang, Chieh (Ross) ; Shao, Yunli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3208-4d1169ede0e35692aed016f5ebf9eb1e99b1866a72672cc0a1153342ea715ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Computational geometry</topic><topic>Computer simulation</topic><topic>Connected and automated vehicles</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Ecodriving</topic><topic>eco‐driving</topic><topic>Energy consumption</topic><topic>ENGINEERING</topic><topic>Fuel consumption</topic><topic>Idling</topic><topic>Mathematical programming</topic><topic>Model predictive control</topic><topic>Nonlinear dynamics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Robustness (mathematics)</topic><topic>Speed control</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Traffic signals</topic><topic>Traffic speed</topic><topic>Transportation corridors</topic><topic>Transportation systems</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yang</creatorcontrib><creatorcontrib>Wang, Zhenbo</creatorcontrib><creatorcontrib>LaClair, Tim J.</creatorcontrib><creatorcontrib>Wang, Chieh (Ross)</creatorcontrib><creatorcontrib>Shao, Yunli</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yang</au><au>Wang, Zhenbo</au><au>LaClair, Tim J.</au><au>Wang, Chieh (Ross)</au><au>Shao, Yunli</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2023-07</date><risdate>2023</risdate><volume>44</volume><issue>4</issue><spage>2257</spage><epage>2277</epage><pages>2257-2277</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interactions and nonlinear vehicle dynamics is still a daunting task. In this paper, we develop a novel speed control method for CAVs to produce optimal speed profiles that minimize the fuel consumption and avoid idling at signalized intersections. To this end, an optimal control problem is formulated using the information of the upcoming traffic signal to adapt vehicles' speeds to avoid frequent stop‐and‐go driving patterns. By applying the pseudospectral discretization method and the sequential convex programming method, the computational efficiency is greatly improved, enabling potential real‐time on‐vehicle applications. In addition, the algorithm is implemented under a model predictive control framework to ensure online control with instant response for collision avoidance and robust vehicle coordination. The proposed algorithm is verified through numerical simulations of three different traffic scenarios. The convergence and accuracy of the proposed approach are demonstrated by comparing with a popular nonlinear solver. Furthermore, the benefit of the proposed method in both traffic mobility and fuel efficiency is validated using the speed profile determined from a traffic following model in a simulation software as the baseline.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2978</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8979-9765</orcidid><orcidid>https://orcid.org/0000000289799765</orcidid><orcidid>https://orcid.org/0000000180737683</orcidid><orcidid>https://orcid.org/0000000241913098</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2023-07, Vol.44 (4), p.2257-2277
issn 0143-2087
1099-1514
language eng
recordid cdi_osti_scitechconnect_1923235
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Collision avoidance
Computational geometry
Computer simulation
Connected and automated vehicles
Control algorithms
Control methods
Convex optimization
Convexity
Ecodriving
eco‐driving
Energy consumption
ENGINEERING
Fuel consumption
Idling
Mathematical programming
Model predictive control
Nonlinear dynamics
Optimal control
Optimization
Predictive control
Robustness (mathematics)
Speed control
Traffic information
Traffic models
Traffic signals
Traffic speed
Transportation corridors
Transportation systems
Vehicles
title Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%E2%80%90time%20control%20of%20connected%20vehicles%20in%20signalized%20corridors%20using%20pseudospectral%20convex%20optimization&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Shi,%20Yang&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-07&rft.volume=44&rft.issue=4&rft.spage=2257&rft.epage=2277&rft.pages=2257-2277&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2978&rft_dat=%3Cproquest_osti_%3E2836973618%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836973618&rft_id=info:pmid/&rfr_iscdi=true