Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization
Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interact...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2023-07, Vol.44 (4), p.2257-2277 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2277 |
---|---|
container_issue | 4 |
container_start_page | 2257 |
container_title | Optimal control applications & methods |
container_volume | 44 |
creator | Shi, Yang Wang, Zhenbo LaClair, Tim J. Wang, Chieh (Ross) Shao, Yunli |
description | Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interactions and nonlinear vehicle dynamics is still a daunting task. In this paper, we develop a novel speed control method for CAVs to produce optimal speed profiles that minimize the fuel consumption and avoid idling at signalized intersections. To this end, an optimal control problem is formulated using the information of the upcoming traffic signal to adapt vehicles' speeds to avoid frequent stop‐and‐go driving patterns. By applying the pseudospectral discretization method and the sequential convex programming method, the computational efficiency is greatly improved, enabling potential real‐time on‐vehicle applications. In addition, the algorithm is implemented under a model predictive control framework to ensure online control with instant response for collision avoidance and robust vehicle coordination. The proposed algorithm is verified through numerical simulations of three different traffic scenarios. The convergence and accuracy of the proposed approach are demonstrated by comparing with a popular nonlinear solver. Furthermore, the benefit of the proposed method in both traffic mobility and fuel efficiency is validated using the speed profile determined from a traffic following model in a simulation software as the baseline. |
doi_str_mv | 10.1002/oca.2978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1923235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836973618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3208-4d1169ede0e35692aed016f5ebf9eb1e99b1866a72672cc0a1153342ea715ca53</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcYQINmxSPHb-vKwq_qRKlRCsLdeZtK7SONhJoV1xBM7ISUgIW1YzGn3vad4j5BLoBChlt1arCRNpdkRGQIUIIYbomIwoRDxkNEtPyZn3G0ppCpyNyOYZVfn9-dWYLQbaVo2zZWCLfq1QN5gHO1wbXaIPTBV4s6pUaQ7dWVvnTG6dD1pvqlVQe2xz6-tO5FTZ63f4Edi6MzYH1RhbnZOTQpUeL_7mmLze373MHsP54uFpNp2HmncPhlEOkAjMkSKPE8EU5hSSIsZlIXAJKMQSsiRRKUtSpjVVADHnEUOVQqxVzMfkavC1vjHSa9OgXv_lkSAYZ7yHrgeodvatRd_IjW1dF85LlvFEpDyBrKNuBko7673DQtbObJXbS6Cyr1t2dcu-7g4NB_TdlLj_l5OL2fSX_wEtI4M1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836973618</pqid></control><display><type>article</type><title>Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Yang ; Wang, Zhenbo ; LaClair, Tim J. ; Wang, Chieh (Ross) ; Shao, Yunli</creator><creatorcontrib>Shi, Yang ; Wang, Zhenbo ; LaClair, Tim J. ; Wang, Chieh (Ross) ; Shao, Yunli ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interactions and nonlinear vehicle dynamics is still a daunting task. In this paper, we develop a novel speed control method for CAVs to produce optimal speed profiles that minimize the fuel consumption and avoid idling at signalized intersections. To this end, an optimal control problem is formulated using the information of the upcoming traffic signal to adapt vehicles' speeds to avoid frequent stop‐and‐go driving patterns. By applying the pseudospectral discretization method and the sequential convex programming method, the computational efficiency is greatly improved, enabling potential real‐time on‐vehicle applications. In addition, the algorithm is implemented under a model predictive control framework to ensure online control with instant response for collision avoidance and robust vehicle coordination. The proposed algorithm is verified through numerical simulations of three different traffic scenarios. The convergence and accuracy of the proposed approach are demonstrated by comparing with a popular nonlinear solver. Furthermore, the benefit of the proposed method in both traffic mobility and fuel efficiency is validated using the speed profile determined from a traffic following model in a simulation software as the baseline.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2978</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Collision avoidance ; Computational geometry ; Computer simulation ; Connected and automated vehicles ; Control algorithms ; Control methods ; Convex optimization ; Convexity ; Ecodriving ; eco‐driving ; Energy consumption ; ENGINEERING ; Fuel consumption ; Idling ; Mathematical programming ; Model predictive control ; Nonlinear dynamics ; Optimal control ; Optimization ; Predictive control ; Robustness (mathematics) ; Speed control ; Traffic information ; Traffic models ; Traffic signals ; Traffic speed ; Transportation corridors ; Transportation systems ; Vehicles</subject><ispartof>Optimal control applications & methods, 2023-07, Vol.44 (4), p.2257-2277</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3208-4d1169ede0e35692aed016f5ebf9eb1e99b1866a72672cc0a1153342ea715ca53</citedby><cites>FETCH-LOGICAL-c3208-4d1169ede0e35692aed016f5ebf9eb1e99b1866a72672cc0a1153342ea715ca53</cites><orcidid>0000-0002-8979-9765 ; 0000000289799765 ; 0000000180737683 ; 0000000241913098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2978$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2978$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1923235$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yang</creatorcontrib><creatorcontrib>Wang, Zhenbo</creatorcontrib><creatorcontrib>LaClair, Tim J.</creatorcontrib><creatorcontrib>Wang, Chieh (Ross)</creatorcontrib><creatorcontrib>Shao, Yunli</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization</title><title>Optimal control applications & methods</title><description>Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interactions and nonlinear vehicle dynamics is still a daunting task. In this paper, we develop a novel speed control method for CAVs to produce optimal speed profiles that minimize the fuel consumption and avoid idling at signalized intersections. To this end, an optimal control problem is formulated using the information of the upcoming traffic signal to adapt vehicles' speeds to avoid frequent stop‐and‐go driving patterns. By applying the pseudospectral discretization method and the sequential convex programming method, the computational efficiency is greatly improved, enabling potential real‐time on‐vehicle applications. In addition, the algorithm is implemented under a model predictive control framework to ensure online control with instant response for collision avoidance and robust vehicle coordination. The proposed algorithm is verified through numerical simulations of three different traffic scenarios. The convergence and accuracy of the proposed approach are demonstrated by comparing with a popular nonlinear solver. Furthermore, the benefit of the proposed method in both traffic mobility and fuel efficiency is validated using the speed profile determined from a traffic following model in a simulation software as the baseline.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Computational geometry</subject><subject>Computer simulation</subject><subject>Connected and automated vehicles</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Ecodriving</subject><subject>eco‐driving</subject><subject>Energy consumption</subject><subject>ENGINEERING</subject><subject>Fuel consumption</subject><subject>Idling</subject><subject>Mathematical programming</subject><subject>Model predictive control</subject><subject>Nonlinear dynamics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Robustness (mathematics)</subject><subject>Speed control</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Traffic signals</subject><subject>Traffic speed</subject><subject>Transportation corridors</subject><subject>Transportation systems</subject><subject>Vehicles</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgcYQINmxSPHb-vKwq_qRKlRCsLdeZtK7SONhJoV1xBM7ISUgIW1YzGn3vad4j5BLoBChlt1arCRNpdkRGQIUIIYbomIwoRDxkNEtPyZn3G0ppCpyNyOYZVfn9-dWYLQbaVo2zZWCLfq1QN5gHO1wbXaIPTBV4s6pUaQ7dWVvnTG6dD1pvqlVQe2xz6-tO5FTZ63f4Edi6MzYH1RhbnZOTQpUeL_7mmLze373MHsP54uFpNp2HmncPhlEOkAjMkSKPE8EU5hSSIsZlIXAJKMQSsiRRKUtSpjVVADHnEUOVQqxVzMfkavC1vjHSa9OgXv_lkSAYZ7yHrgeodvatRd_IjW1dF85LlvFEpDyBrKNuBko7673DQtbObJXbS6Cyr1t2dcu-7g4NB_TdlLj_l5OL2fSX_wEtI4M1</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Shi, Yang</creator><creator>Wang, Zhenbo</creator><creator>LaClair, Tim J.</creator><creator>Wang, Chieh (Ross)</creator><creator>Shao, Yunli</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8979-9765</orcidid><orcidid>https://orcid.org/0000000289799765</orcidid><orcidid>https://orcid.org/0000000180737683</orcidid><orcidid>https://orcid.org/0000000241913098</orcidid></search><sort><creationdate>202307</creationdate><title>Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization</title><author>Shi, Yang ; Wang, Zhenbo ; LaClair, Tim J. ; Wang, Chieh (Ross) ; Shao, Yunli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3208-4d1169ede0e35692aed016f5ebf9eb1e99b1866a72672cc0a1153342ea715ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Computational geometry</topic><topic>Computer simulation</topic><topic>Connected and automated vehicles</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Ecodriving</topic><topic>eco‐driving</topic><topic>Energy consumption</topic><topic>ENGINEERING</topic><topic>Fuel consumption</topic><topic>Idling</topic><topic>Mathematical programming</topic><topic>Model predictive control</topic><topic>Nonlinear dynamics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Robustness (mathematics)</topic><topic>Speed control</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Traffic signals</topic><topic>Traffic speed</topic><topic>Transportation corridors</topic><topic>Transportation systems</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yang</creatorcontrib><creatorcontrib>Wang, Zhenbo</creatorcontrib><creatorcontrib>LaClair, Tim J.</creatorcontrib><creatorcontrib>Wang, Chieh (Ross)</creatorcontrib><creatorcontrib>Shao, Yunli</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yang</au><au>Wang, Zhenbo</au><au>LaClair, Tim J.</au><au>Wang, Chieh (Ross)</au><au>Shao, Yunli</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization</atitle><jtitle>Optimal control applications & methods</jtitle><date>2023-07</date><risdate>2023</risdate><volume>44</volume><issue>4</issue><spage>2257</spage><epage>2277</epage><pages>2257-2277</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>Recent advances in Connected and Automated Vehicle (CAV) technologies have opened up new opportunities to enable safe, efficient, and sustainable transportation systems. However, developing reliable and rapid speed control algorithms in highly dynamic environments with complex inter‐vehicle interactions and nonlinear vehicle dynamics is still a daunting task. In this paper, we develop a novel speed control method for CAVs to produce optimal speed profiles that minimize the fuel consumption and avoid idling at signalized intersections. To this end, an optimal control problem is formulated using the information of the upcoming traffic signal to adapt vehicles' speeds to avoid frequent stop‐and‐go driving patterns. By applying the pseudospectral discretization method and the sequential convex programming method, the computational efficiency is greatly improved, enabling potential real‐time on‐vehicle applications. In addition, the algorithm is implemented under a model predictive control framework to ensure online control with instant response for collision avoidance and robust vehicle coordination. The proposed algorithm is verified through numerical simulations of three different traffic scenarios. The convergence and accuracy of the proposed approach are demonstrated by comparing with a popular nonlinear solver. Furthermore, the benefit of the proposed method in both traffic mobility and fuel efficiency is validated using the speed profile determined from a traffic following model in a simulation software as the baseline.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2978</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8979-9765</orcidid><orcidid>https://orcid.org/0000000289799765</orcidid><orcidid>https://orcid.org/0000000180737683</orcidid><orcidid>https://orcid.org/0000000241913098</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2023-07, Vol.44 (4), p.2257-2277 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_osti_scitechconnect_1923235 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Collision avoidance Computational geometry Computer simulation Connected and automated vehicles Control algorithms Control methods Convex optimization Convexity Ecodriving eco‐driving Energy consumption ENGINEERING Fuel consumption Idling Mathematical programming Model predictive control Nonlinear dynamics Optimal control Optimization Predictive control Robustness (mathematics) Speed control Traffic information Traffic models Traffic signals Traffic speed Transportation corridors Transportation systems Vehicles |
title | Real‐time control of connected vehicles in signalized corridors using pseudospectral convex optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%E2%80%90time%20control%20of%20connected%20vehicles%20in%20signalized%20corridors%20using%20pseudospectral%20convex%20optimization&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Shi,%20Yang&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-07&rft.volume=44&rft.issue=4&rft.spage=2257&rft.epage=2277&rft.pages=2257-2277&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2978&rft_dat=%3Cproquest_osti_%3E2836973618%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836973618&rft_id=info:pmid/&rfr_iscdi=true |