Unveiling the microstructural evolution of carbon fibers derived from polyamide-6
Polyacrylonitrile-based carbon fibers have dominated the industry for decades, but the high cost of polyacrylonitrile has prevented the widespread adoption of carbon fiber in high-volume structural applications. As such, a significant amount of research has been dedicated to finding an alternative,...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2023-02, Vol.30 (2), Article 72 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of polymer research |
container_volume | 30 |
creator | Love-Baker, Cole A. Harrell, Timothy M. Scherschel, Alexander Gao, Zan Song, Ningning Brown, Kenneth R. Vautard, Frederic Ivanov, Ilia Klett, James Li, Xiaodong |
description | Polyacrylonitrile-based carbon fibers have dominated the industry for decades, but the high cost of polyacrylonitrile has prevented the widespread adoption of carbon fiber in high-volume structural applications. As such, a significant amount of research has been dedicated to finding an alternative, low-cost carbon fiber precursor. In this work, carbon fibers were produced from polyamide-6 using metal salt impregnation and a thermo-oxidative stabilization step. To gain further insight into the carbonization process and microstructural transformation, the morphologies, crystallinities, elemental compositions, and thermal stabilities of the fibers were characterized at various stages of processing. The stabilization step resulted in a significant increase in carbon yield, indicating a dramatic increase in thermal stability. This is due to the crosslinking of polyamide-6 chains, which was confirmed by functional group analysis. The crystallinity of the fibers was also significantly altered during processing, as the produced carbon fibers consisted of pseudo-amorphous carbon with two distinct regions of metal salt impregnation. The findings and microstructural evolution mechanisms provide guidelines for further research into carbon fiber produced from polyamide-6. |
doi_str_mv | 10.1007/s10965-023-03455-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1923156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733648511</galeid><sourcerecordid>A733648511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2efd00cb2170c4568850dc62992024df0bb3d35136f94b85bac52f8ee811e7863</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsoqKtfwFPRc3SSNGl7FPEfCCK459Cmk91IN1mTdMFvb9YK3mQOMwzvNzzmFcUFhWsKUN9ECq0UBBgnwCshiDwoTqioGWlaLg7zDIyRtpZwXJzG-AEgRC2bk-Jt6XZoR-tWZVpjubE6-JjCpNMUurHEnR-nZL0rvSl1F_o8GdtjiOWAwe5wKE3wm3Lrx69uYwck8qw4Mt0Y8fy3L4rlw_373RN5eX18vrt9IbpibSIMzQCge0Zr0JWQTSNg0JK1LQNWDQb6ng9cUC5NW_WN6DstmGkQG0qxbiRfFJfz3ezXqqhtQr3W3jnUSdGWcSr2oqtZtA3-c8KY1Iefgsu-FKulrPKxCrLqelatuhGVdcan0OlcA-aHeIfG5v1tzXkmBKUZYDOw_1YMaNQ22E0XvhQFtQ9EzYGoHIj6CUTtvfAZilnsVhj-vPxDfQP4SY0R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766481140</pqid></control><display><type>article</type><title>Unveiling the microstructural evolution of carbon fibers derived from polyamide-6</title><source>SpringerNature Journals</source><creator>Love-Baker, Cole A. ; Harrell, Timothy M. ; Scherschel, Alexander ; Gao, Zan ; Song, Ningning ; Brown, Kenneth R. ; Vautard, Frederic ; Ivanov, Ilia ; Klett, James ; Li, Xiaodong</creator><creatorcontrib>Love-Baker, Cole A. ; Harrell, Timothy M. ; Scherschel, Alexander ; Gao, Zan ; Song, Ningning ; Brown, Kenneth R. ; Vautard, Frederic ; Ivanov, Ilia ; Klett, James ; Li, Xiaodong ; Univ. of Virginia, Charlottesville, VA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Polyacrylonitrile-based carbon fibers have dominated the industry for decades, but the high cost of polyacrylonitrile has prevented the widespread adoption of carbon fiber in high-volume structural applications. As such, a significant amount of research has been dedicated to finding an alternative, low-cost carbon fiber precursor. In this work, carbon fibers were produced from polyamide-6 using metal salt impregnation and a thermo-oxidative stabilization step. To gain further insight into the carbonization process and microstructural transformation, the morphologies, crystallinities, elemental compositions, and thermal stabilities of the fibers were characterized at various stages of processing. The stabilization step resulted in a significant increase in carbon yield, indicating a dramatic increase in thermal stability. This is due to the crosslinking of polyamide-6 chains, which was confirmed by functional group analysis. The crystallinity of the fibers was also significantly altered during processing, as the produced carbon fibers consisted of pseudo-amorphous carbon with two distinct regions of metal salt impregnation. The findings and microstructural evolution mechanisms provide guidelines for further research into carbon fiber produced from polyamide-6.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-023-03455-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; carbon fiber ; Carbon fiber reinforced plastics ; Carbon fibers ; carbonization ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Crosslinked polymers ; Crosslinking ; crystallinity ; Evolution ; Functional groups ; Industrial Chemistry/Chemical Engineering ; MATERIALS SCIENCE ; metal salt ; Original Paper ; Polyacrylonitrile ; Polyamide resins ; polyamide-6 ; Polyamide-6, carbon fiber, stabilization, carbonization, metal salt, crystallinity ; Polyamides ; Polymer Sciences ; stabilization ; Thermal stability</subject><ispartof>Journal of polymer research, 2023-02, Vol.30 (2), Article 72</ispartof><rights>The Polymer Society, Taipei 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2efd00cb2170c4568850dc62992024df0bb3d35136f94b85bac52f8ee811e7863</citedby><cites>FETCH-LOGICAL-c429t-2efd00cb2170c4568850dc62992024df0bb3d35136f94b85bac52f8ee811e7863</cites><orcidid>0000-0002-5712-3074 ; 0000000267262502 ; 0000000225539649 ; 0000000257123074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-023-03455-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-023-03455-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1923156$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Love-Baker, Cole A.</creatorcontrib><creatorcontrib>Harrell, Timothy M.</creatorcontrib><creatorcontrib>Scherschel, Alexander</creatorcontrib><creatorcontrib>Gao, Zan</creatorcontrib><creatorcontrib>Song, Ningning</creatorcontrib><creatorcontrib>Brown, Kenneth R.</creatorcontrib><creatorcontrib>Vautard, Frederic</creatorcontrib><creatorcontrib>Ivanov, Ilia</creatorcontrib><creatorcontrib>Klett, James</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Univ. of Virginia, Charlottesville, VA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Unveiling the microstructural evolution of carbon fibers derived from polyamide-6</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Polyacrylonitrile-based carbon fibers have dominated the industry for decades, but the high cost of polyacrylonitrile has prevented the widespread adoption of carbon fiber in high-volume structural applications. As such, a significant amount of research has been dedicated to finding an alternative, low-cost carbon fiber precursor. In this work, carbon fibers were produced from polyamide-6 using metal salt impregnation and a thermo-oxidative stabilization step. To gain further insight into the carbonization process and microstructural transformation, the morphologies, crystallinities, elemental compositions, and thermal stabilities of the fibers were characterized at various stages of processing. The stabilization step resulted in a significant increase in carbon yield, indicating a dramatic increase in thermal stability. This is due to the crosslinking of polyamide-6 chains, which was confirmed by functional group analysis. The crystallinity of the fibers was also significantly altered during processing, as the produced carbon fibers consisted of pseudo-amorphous carbon with two distinct regions of metal salt impregnation. The findings and microstructural evolution mechanisms provide guidelines for further research into carbon fiber produced from polyamide-6.</description><subject>Analysis</subject><subject>carbon fiber</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>carbonization</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crosslinked polymers</subject><subject>Crosslinking</subject><subject>crystallinity</subject><subject>Evolution</subject><subject>Functional groups</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>MATERIALS SCIENCE</subject><subject>metal salt</subject><subject>Original Paper</subject><subject>Polyacrylonitrile</subject><subject>Polyamide resins</subject><subject>polyamide-6</subject><subject>Polyamide-6, carbon fiber, stabilization, carbonization, metal salt, crystallinity</subject><subject>Polyamides</subject><subject>Polymer Sciences</subject><subject>stabilization</subject><subject>Thermal stability</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYsoqKtfwFPRc3SSNGl7FPEfCCK459Cmk91IN1mTdMFvb9YK3mQOMwzvNzzmFcUFhWsKUN9ECq0UBBgnwCshiDwoTqioGWlaLg7zDIyRtpZwXJzG-AEgRC2bk-Jt6XZoR-tWZVpjubE6-JjCpNMUurHEnR-nZL0rvSl1F_o8GdtjiOWAwe5wKE3wm3Lrx69uYwck8qw4Mt0Y8fy3L4rlw_373RN5eX18vrt9IbpibSIMzQCge0Zr0JWQTSNg0JK1LQNWDQb6ng9cUC5NW_WN6DstmGkQG0qxbiRfFJfz3ezXqqhtQr3W3jnUSdGWcSr2oqtZtA3-c8KY1Iefgsu-FKulrPKxCrLqelatuhGVdcan0OlcA-aHeIfG5v1tzXkmBKUZYDOw_1YMaNQ22E0XvhQFtQ9EzYGoHIj6CUTtvfAZilnsVhj-vPxDfQP4SY0R</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Love-Baker, Cole A.</creator><creator>Harrell, Timothy M.</creator><creator>Scherschel, Alexander</creator><creator>Gao, Zan</creator><creator>Song, Ningning</creator><creator>Brown, Kenneth R.</creator><creator>Vautard, Frederic</creator><creator>Ivanov, Ilia</creator><creator>Klett, James</creator><creator>Li, Xiaodong</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5712-3074</orcidid><orcidid>https://orcid.org/0000000267262502</orcidid><orcidid>https://orcid.org/0000000225539649</orcidid><orcidid>https://orcid.org/0000000257123074</orcidid></search><sort><creationdate>20230201</creationdate><title>Unveiling the microstructural evolution of carbon fibers derived from polyamide-6</title><author>Love-Baker, Cole A. ; Harrell, Timothy M. ; Scherschel, Alexander ; Gao, Zan ; Song, Ningning ; Brown, Kenneth R. ; Vautard, Frederic ; Ivanov, Ilia ; Klett, James ; Li, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2efd00cb2170c4568850dc62992024df0bb3d35136f94b85bac52f8ee811e7863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>carbon fiber</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>carbonization</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crosslinked polymers</topic><topic>Crosslinking</topic><topic>crystallinity</topic><topic>Evolution</topic><topic>Functional groups</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>MATERIALS SCIENCE</topic><topic>metal salt</topic><topic>Original Paper</topic><topic>Polyacrylonitrile</topic><topic>Polyamide resins</topic><topic>polyamide-6</topic><topic>Polyamide-6, carbon fiber, stabilization, carbonization, metal salt, crystallinity</topic><topic>Polyamides</topic><topic>Polymer Sciences</topic><topic>stabilization</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Love-Baker, Cole A.</creatorcontrib><creatorcontrib>Harrell, Timothy M.</creatorcontrib><creatorcontrib>Scherschel, Alexander</creatorcontrib><creatorcontrib>Gao, Zan</creatorcontrib><creatorcontrib>Song, Ningning</creatorcontrib><creatorcontrib>Brown, Kenneth R.</creatorcontrib><creatorcontrib>Vautard, Frederic</creatorcontrib><creatorcontrib>Ivanov, Ilia</creatorcontrib><creatorcontrib>Klett, James</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Univ. of Virginia, Charlottesville, VA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Love-Baker, Cole A.</au><au>Harrell, Timothy M.</au><au>Scherschel, Alexander</au><au>Gao, Zan</au><au>Song, Ningning</au><au>Brown, Kenneth R.</au><au>Vautard, Frederic</au><au>Ivanov, Ilia</au><au>Klett, James</au><au>Li, Xiaodong</au><aucorp>Univ. of Virginia, Charlottesville, VA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the microstructural evolution of carbon fibers derived from polyamide-6</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><artnum>72</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Polyacrylonitrile-based carbon fibers have dominated the industry for decades, but the high cost of polyacrylonitrile has prevented the widespread adoption of carbon fiber in high-volume structural applications. As such, a significant amount of research has been dedicated to finding an alternative, low-cost carbon fiber precursor. In this work, carbon fibers were produced from polyamide-6 using metal salt impregnation and a thermo-oxidative stabilization step. To gain further insight into the carbonization process and microstructural transformation, the morphologies, crystallinities, elemental compositions, and thermal stabilities of the fibers were characterized at various stages of processing. The stabilization step resulted in a significant increase in carbon yield, indicating a dramatic increase in thermal stability. This is due to the crosslinking of polyamide-6 chains, which was confirmed by functional group analysis. The crystallinity of the fibers was also significantly altered during processing, as the produced carbon fibers consisted of pseudo-amorphous carbon with two distinct regions of metal salt impregnation. The findings and microstructural evolution mechanisms provide guidelines for further research into carbon fiber produced from polyamide-6.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-023-03455-6</doi><orcidid>https://orcid.org/0000-0002-5712-3074</orcidid><orcidid>https://orcid.org/0000000267262502</orcidid><orcidid>https://orcid.org/0000000225539649</orcidid><orcidid>https://orcid.org/0000000257123074</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-9760 |
ispartof | Journal of polymer research, 2023-02, Vol.30 (2), Article 72 |
issn | 1022-9760 1572-8935 |
language | eng |
recordid | cdi_osti_scitechconnect_1923156 |
source | SpringerNature Journals |
subjects | Analysis carbon fiber Carbon fiber reinforced plastics Carbon fibers carbonization Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Crosslinked polymers Crosslinking crystallinity Evolution Functional groups Industrial Chemistry/Chemical Engineering MATERIALS SCIENCE metal salt Original Paper Polyacrylonitrile Polyamide resins polyamide-6 Polyamide-6, carbon fiber, stabilization, carbonization, metal salt, crystallinity Polyamides Polymer Sciences stabilization Thermal stability |
title | Unveiling the microstructural evolution of carbon fibers derived from polyamide-6 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20microstructural%20evolution%20of%20carbon%20fibers%20derived%20from%20polyamide-6&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Love-Baker,%20Cole%20A.&rft.aucorp=Univ.%20of%20Virginia,%20Charlottesville,%20VA%20(United%20States)&rft.date=2023-02-01&rft.volume=30&rft.issue=2&rft.artnum=72&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-023-03455-6&rft_dat=%3Cgale_osti_%3EA733648511%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766481140&rft_id=info:pmid/&rft_galeid=A733648511&rfr_iscdi=true |