Cluster characterization in atom probe tomography: Machine learning using multiple summary functions

In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2023-05, Vol.247 (C), p.113687-113687, Article 113687
Hauptverfasser: Bennett, Roland A., Proudian, Andrew P., Zimmerman, Jeramy D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113687
container_issue C
container_start_page 113687
container_title Ultramicroscopy
container_volume 247
creator Bennett, Roland A.
Proudian, Andrew P.
Zimmerman, Jeramy D.
description In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley’s K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr. •Here, we use statistical learning to characterize simulated clustered atom probe tomography data.•Nearest-neighbor functions significantly improve performance of machine learning algorithm.•81% reduction in the error of prediction of the concentration in the clusters.•92% reduction in the error of prediction of the concentration in the background.•New ability to differentiate variations in radius from changes in the average.
doi_str_mv 10.1016/j.ultramic.2023.113687
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1923116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399123000049</els_id><sourcerecordid>2771083672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-701a0719372c99657f91f92aa471fbf0011ba174ef59491fe4b4f66986039a2c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EapfSV6gsTlyyeOzUjjmBVi2tVMQFzpbjHXe9SuzFTpDK0-MoLVcu9kjzzcw_8xNyBWwLDOTH43YepmzH4LaccbEFELJTr8gGOqUbrrh4TTZMsLYRWsM5eVvKkTEGrO3OyLmQimnZiQ3Z74a5TJipO9hsXY3CHzuFFGmI1E5ppKeceqQ1So_Zng5Pn-g36w4hIh3Q5hjiI53L8o5VUTgNSMs8jjY_UT9Ht7Qq78gbb4eCl8__Bfl5e_Njd9c8fP96v_vy0Li2FVOjGFimQAvFndbyWnkNXnNrWwW-91U99BZUi_5atzWFbd96KXUnmdCWO3FB3q99U5mCKS5M6A4uxYhuMqC5AJAV-rBCdbFfM5bJjKE4HAYbMc3FcKWAdfVCvKJyRV1OpWT05pTDspoBZhYbzNG82GAWG8xqQy28ep4x9yPu_5W93L0Cn1cA6zl-B8yLWowO9yEvYvcp_G_GX5RwnSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771083672</pqid></control><display><type>article</type><title>Cluster characterization in atom probe tomography: Machine learning using multiple summary functions</title><source>Elsevier ScienceDirect Journals</source><creator>Bennett, Roland A. ; Proudian, Andrew P. ; Zimmerman, Jeramy D.</creator><creatorcontrib>Bennett, Roland A. ; Proudian, Andrew P. ; Zimmerman, Jeramy D.</creatorcontrib><description>In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley’s K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr. •Here, we use statistical learning to characterize simulated clustered atom probe tomography data.•Nearest-neighbor functions significantly improve performance of machine learning algorithm.•81% reduction in the error of prediction of the concentration in the clusters.•92% reduction in the error of prediction of the concentration in the background.•New ability to differentiate variations in radius from changes in the average.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2023.113687</identifier><identifier>PMID: 36709683</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Atom probe tomography ; Cluster detection ; Machine learning ; Spatial statistics</subject><ispartof>Ultramicroscopy, 2023-05, Vol.247 (C), p.113687-113687, Article 113687</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-701a0719372c99657f91f92aa471fbf0011ba174ef59491fe4b4f66986039a2c3</citedby><cites>FETCH-LOGICAL-c443t-701a0719372c99657f91f92aa471fbf0011ba174ef59491fe4b4f66986039a2c3</cites><orcidid>0000-0001-8936-5345 ; 0000000189365345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304399123000049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36709683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1923116$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennett, Roland A.</creatorcontrib><creatorcontrib>Proudian, Andrew P.</creatorcontrib><creatorcontrib>Zimmerman, Jeramy D.</creatorcontrib><title>Cluster characterization in atom probe tomography: Machine learning using multiple summary functions</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley’s K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr. •Here, we use statistical learning to characterize simulated clustered atom probe tomography data.•Nearest-neighbor functions significantly improve performance of machine learning algorithm.•81% reduction in the error of prediction of the concentration in the clusters.•92% reduction in the error of prediction of the concentration in the background.•New ability to differentiate variations in radius from changes in the average.</description><subject>Atom probe tomography</subject><subject>Cluster detection</subject><subject>Machine learning</subject><subject>Spatial statistics</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EapfSV6gsTlyyeOzUjjmBVi2tVMQFzpbjHXe9SuzFTpDK0-MoLVcu9kjzzcw_8xNyBWwLDOTH43YepmzH4LaccbEFELJTr8gGOqUbrrh4TTZMsLYRWsM5eVvKkTEGrO3OyLmQimnZiQ3Z74a5TJipO9hsXY3CHzuFFGmI1E5ppKeceqQ1So_Zng5Pn-g36w4hIh3Q5hjiI53L8o5VUTgNSMs8jjY_UT9Ht7Qq78gbb4eCl8__Bfl5e_Njd9c8fP96v_vy0Li2FVOjGFimQAvFndbyWnkNXnNrWwW-91U99BZUi_5atzWFbd96KXUnmdCWO3FB3q99U5mCKS5M6A4uxYhuMqC5AJAV-rBCdbFfM5bJjKE4HAYbMc3FcKWAdfVCvKJyRV1OpWT05pTDspoBZhYbzNG82GAWG8xqQy28ep4x9yPu_5W93L0Cn1cA6zl-B8yLWowO9yEvYvcp_G_GX5RwnSg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Bennett, Roland A.</creator><creator>Proudian, Andrew P.</creator><creator>Zimmerman, Jeramy D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8936-5345</orcidid><orcidid>https://orcid.org/0000000189365345</orcidid></search><sort><creationdate>202305</creationdate><title>Cluster characterization in atom probe tomography: Machine learning using multiple summary functions</title><author>Bennett, Roland A. ; Proudian, Andrew P. ; Zimmerman, Jeramy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-701a0719372c99657f91f92aa471fbf0011ba174ef59491fe4b4f66986039a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atom probe tomography</topic><topic>Cluster detection</topic><topic>Machine learning</topic><topic>Spatial statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, Roland A.</creatorcontrib><creatorcontrib>Proudian, Andrew P.</creatorcontrib><creatorcontrib>Zimmerman, Jeramy D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennett, Roland A.</au><au>Proudian, Andrew P.</au><au>Zimmerman, Jeramy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster characterization in atom probe tomography: Machine learning using multiple summary functions</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2023-05</date><risdate>2023</risdate><volume>247</volume><issue>C</issue><spage>113687</spage><epage>113687</epage><pages>113687-113687</pages><artnum>113687</artnum><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley’s K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr. •Here, we use statistical learning to characterize simulated clustered atom probe tomography data.•Nearest-neighbor functions significantly improve performance of machine learning algorithm.•81% reduction in the error of prediction of the concentration in the clusters.•92% reduction in the error of prediction of the concentration in the background.•New ability to differentiate variations in radius from changes in the average.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36709683</pmid><doi>10.1016/j.ultramic.2023.113687</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8936-5345</orcidid><orcidid>https://orcid.org/0000000189365345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2023-05, Vol.247 (C), p.113687-113687, Article 113687
issn 0304-3991
1879-2723
language eng
recordid cdi_osti_scitechconnect_1923116
source Elsevier ScienceDirect Journals
subjects Atom probe tomography
Cluster detection
Machine learning
Spatial statistics
title Cluster characterization in atom probe tomography: Machine learning using multiple summary functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20characterization%20in%20atom%20probe%20tomography:%20Machine%20learning%20using%20multiple%20summary%20functions&rft.jtitle=Ultramicroscopy&rft.au=Bennett,%20Roland%20A.&rft.date=2023-05&rft.volume=247&rft.issue=C&rft.spage=113687&rft.epage=113687&rft.pages=113687-113687&rft.artnum=113687&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2023.113687&rft_dat=%3Cproquest_osti_%3E2771083672%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771083672&rft_id=info:pmid/36709683&rft_els_id=S0304399123000049&rfr_iscdi=true