Cluster characterization in atom probe tomography: Machine learning using multiple summary functions
In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian...
Gespeichert in:
Veröffentlicht in: | Ultramicroscopy 2023-05, Vol.247 (C), p.113687-113687, Article 113687 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113687 |
---|---|
container_issue | C |
container_start_page | 113687 |
container_title | Ultramicroscopy |
container_volume | 247 |
creator | Bennett, Roland A. Proudian, Andrew P. Zimmerman, Jeramy D. |
description | In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley’s K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr.
•Here, we use statistical learning to characterize simulated clustered atom probe tomography data.•Nearest-neighbor functions significantly improve performance of machine learning algorithm.•81% reduction in the error of prediction of the concentration in the clusters.•92% reduction in the error of prediction of the concentration in the background.•New ability to differentiate variations in radius from changes in the average. |
doi_str_mv | 10.1016/j.ultramic.2023.113687 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1923116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399123000049</els_id><sourcerecordid>2771083672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-701a0719372c99657f91f92aa471fbf0011ba174ef59491fe4b4f66986039a2c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EapfSV6gsTlyyeOzUjjmBVi2tVMQFzpbjHXe9SuzFTpDK0-MoLVcu9kjzzcw_8xNyBWwLDOTH43YepmzH4LaccbEFELJTr8gGOqUbrrh4TTZMsLYRWsM5eVvKkTEGrO3OyLmQimnZiQ3Z74a5TJipO9hsXY3CHzuFFGmI1E5ppKeceqQ1So_Zng5Pn-g36w4hIh3Q5hjiI53L8o5VUTgNSMs8jjY_UT9Ht7Qq78gbb4eCl8__Bfl5e_Njd9c8fP96v_vy0Li2FVOjGFimQAvFndbyWnkNXnNrWwW-91U99BZUi_5atzWFbd96KXUnmdCWO3FB3q99U5mCKS5M6A4uxYhuMqC5AJAV-rBCdbFfM5bJjKE4HAYbMc3FcKWAdfVCvKJyRV1OpWT05pTDspoBZhYbzNG82GAWG8xqQy28ep4x9yPu_5W93L0Cn1cA6zl-B8yLWowO9yEvYvcp_G_GX5RwnSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771083672</pqid></control><display><type>article</type><title>Cluster characterization in atom probe tomography: Machine learning using multiple summary functions</title><source>Elsevier ScienceDirect Journals</source><creator>Bennett, Roland A. ; Proudian, Andrew P. ; Zimmerman, Jeramy D.</creator><creatorcontrib>Bennett, Roland A. ; Proudian, Andrew P. ; Zimmerman, Jeramy D.</creatorcontrib><description>In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley’s K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr.
•Here, we use statistical learning to characterize simulated clustered atom probe tomography data.•Nearest-neighbor functions significantly improve performance of machine learning algorithm.•81% reduction in the error of prediction of the concentration in the clusters.•92% reduction in the error of prediction of the concentration in the background.•New ability to differentiate variations in radius from changes in the average.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2023.113687</identifier><identifier>PMID: 36709683</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Atom probe tomography ; Cluster detection ; Machine learning ; Spatial statistics</subject><ispartof>Ultramicroscopy, 2023-05, Vol.247 (C), p.113687-113687, Article 113687</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-701a0719372c99657f91f92aa471fbf0011ba174ef59491fe4b4f66986039a2c3</citedby><cites>FETCH-LOGICAL-c443t-701a0719372c99657f91f92aa471fbf0011ba174ef59491fe4b4f66986039a2c3</cites><orcidid>0000-0001-8936-5345 ; 0000000189365345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304399123000049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36709683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1923116$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennett, Roland A.</creatorcontrib><creatorcontrib>Proudian, Andrew P.</creatorcontrib><creatorcontrib>Zimmerman, Jeramy D.</creatorcontrib><title>Cluster characterization in atom probe tomography: Machine learning using multiple summary functions</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley’s K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr.
•Here, we use statistical learning to characterize simulated clustered atom probe tomography data.•Nearest-neighbor functions significantly improve performance of machine learning algorithm.•81% reduction in the error of prediction of the concentration in the clusters.•92% reduction in the error of prediction of the concentration in the background.•New ability to differentiate variations in radius from changes in the average.</description><subject>Atom probe tomography</subject><subject>Cluster detection</subject><subject>Machine learning</subject><subject>Spatial statistics</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EapfSV6gsTlyyeOzUjjmBVi2tVMQFzpbjHXe9SuzFTpDK0-MoLVcu9kjzzcw_8xNyBWwLDOTH43YepmzH4LaccbEFELJTr8gGOqUbrrh4TTZMsLYRWsM5eVvKkTEGrO3OyLmQimnZiQ3Z74a5TJipO9hsXY3CHzuFFGmI1E5ppKeceqQ1So_Zng5Pn-g36w4hIh3Q5hjiI53L8o5VUTgNSMs8jjY_UT9Ht7Qq78gbb4eCl8__Bfl5e_Njd9c8fP96v_vy0Li2FVOjGFimQAvFndbyWnkNXnNrWwW-91U99BZUi_5atzWFbd96KXUnmdCWO3FB3q99U5mCKS5M6A4uxYhuMqC5AJAV-rBCdbFfM5bJjKE4HAYbMc3FcKWAdfVCvKJyRV1OpWT05pTDspoBZhYbzNG82GAWG8xqQy28ep4x9yPu_5W93L0Cn1cA6zl-B8yLWowO9yEvYvcp_G_GX5RwnSg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Bennett, Roland A.</creator><creator>Proudian, Andrew P.</creator><creator>Zimmerman, Jeramy D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8936-5345</orcidid><orcidid>https://orcid.org/0000000189365345</orcidid></search><sort><creationdate>202305</creationdate><title>Cluster characterization in atom probe tomography: Machine learning using multiple summary functions</title><author>Bennett, Roland A. ; Proudian, Andrew P. ; Zimmerman, Jeramy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-701a0719372c99657f91f92aa471fbf0011ba174ef59491fe4b4f66986039a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atom probe tomography</topic><topic>Cluster detection</topic><topic>Machine learning</topic><topic>Spatial statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, Roland A.</creatorcontrib><creatorcontrib>Proudian, Andrew P.</creatorcontrib><creatorcontrib>Zimmerman, Jeramy D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennett, Roland A.</au><au>Proudian, Andrew P.</au><au>Zimmerman, Jeramy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster characterization in atom probe tomography: Machine learning using multiple summary functions</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2023-05</date><risdate>2023</risdate><volume>247</volume><issue>C</issue><spage>113687</spage><epage>113687</epage><pages>113687-113687</pages><artnum>113687</artnum><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley’s K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr.
•Here, we use statistical learning to characterize simulated clustered atom probe tomography data.•Nearest-neighbor functions significantly improve performance of machine learning algorithm.•81% reduction in the error of prediction of the concentration in the clusters.•92% reduction in the error of prediction of the concentration in the background.•New ability to differentiate variations in radius from changes in the average.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36709683</pmid><doi>10.1016/j.ultramic.2023.113687</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8936-5345</orcidid><orcidid>https://orcid.org/0000000189365345</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3991 |
ispartof | Ultramicroscopy, 2023-05, Vol.247 (C), p.113687-113687, Article 113687 |
issn | 0304-3991 1879-2723 |
language | eng |
recordid | cdi_osti_scitechconnect_1923116 |
source | Elsevier ScienceDirect Journals |
subjects | Atom probe tomography Cluster detection Machine learning Spatial statistics |
title | Cluster characterization in atom probe tomography: Machine learning using multiple summary functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20characterization%20in%20atom%20probe%20tomography:%20Machine%20learning%20using%20multiple%20summary%20functions&rft.jtitle=Ultramicroscopy&rft.au=Bennett,%20Roland%20A.&rft.date=2023-05&rft.volume=247&rft.issue=C&rft.spage=113687&rft.epage=113687&rft.pages=113687-113687&rft.artnum=113687&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2023.113687&rft_dat=%3Cproquest_osti_%3E2771083672%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771083672&rft_id=info:pmid/36709683&rft_els_id=S0304399123000049&rfr_iscdi=true |