Noninvasive liquid level sensing with laser generated ultrasonic waves
•Remote generation of guided ultrasonic wave (GUW) through pulsed laser for application to liquid level sensing.•Noninvasive, high-temperature, level sensing for liquid media contained in a metallic structure.•Prototyping and installation of the high-temperature GUW receivers that utilize piezoelect...
Gespeichert in:
Veröffentlicht in: | Ultrasonics 2023-04, Vol.130 (C), p.106926-106926, Article 106926 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106926 |
---|---|
container_issue | C |
container_start_page | 106926 |
container_title | Ultrasonics |
container_volume | 130 |
creator | Kim, Howuk Balagopal, Bharat Kerrigan, Sean Garcia, Nicholas Chow, Mo-Yuen Bourham, Mohamed Fang, Tiegang Jiang, Xiaoning |
description | •Remote generation of guided ultrasonic wave (GUW) through pulsed laser for application to liquid level sensing.•Noninvasive, high-temperature, level sensing for liquid media contained in a metallic structure.•Prototyping and installation of the high-temperature GUW receivers that utilize piezoelectric single crystals.•Confirmation of the sensor performance through finite element analysis and high-temperature experiments.
This article proposes a noninvasive liquid level sensing technique using laser-generated ultrasound waves for nuclear power plant applications. Liquid level sensors play an important role of managing the coolant system safely and stably in the plant structure. Current sensing techniques are mostly intrusive, performing inside the fluidic structure, which is disadvantageous in terms of the regular maintenance of the plant system. Furthermore, typical intrusive sensors do not perform stably under varying environmental conditions such as temperature and radiation. In this study, sensing units are attached to the outer surface of a liquid vessel to capture guided ultrasound waves in a nonintrusive manner. The signal intensity of the guided wave dissipates when the signal interacts with the internal liquid media. The sensing mechanism is mathematically expressed as an index value to correlate the liquid level with the sensor signal. For the acoustic wave generation, laser-generated ultrasound was adopted instead of using typical contact type transducers. Following the simulation validation of the proposed concept, the performance of the developed sensor was confirmed through experimental results under elevated liquid temperature conditions. The nonlinear multivariable regression exhibited the best-fit to the datasets measured under the variable liquid level and temperature conditions. |
doi_str_mv | 10.1016/j.ultras.2023.106926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1922262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X23000021</els_id><sourcerecordid>2768817452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-65a08ab33156b7a0e71ee78640f35db77d1e101c7831bf26698a256064fc0bbc3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl7eQKS4ctMxtybpRpDBGwy6UXAX0vRUM3RSJ2k7-Pa2dHTpKhC-__znfAidEzwnmIjr1byr22DinGLKhi-RU7GHZkRJnua5UPtohjEnqaD8_Qgdx7jCmHBF2CE6YkIoSnM8Q_fPjXe-N9H1kNRu07kyqaGHOongo_Mfyda1n0ltIoTkAzwE00KZTNVD1CZb00M8RQeVqSOc7d4T9HZ_97p4TJcvD0-L22VqOcvaVGQGK1MwRjJRSINBEgCpBMcVy8pCypLAcJyVipGiokLkytBMYMEri4vCshN0Oc1tYut0tK4F-2kb78G2muSUUkEH6GqCvkKz6SC2eu2ihbo2HpouaiqFUkTybET5hNrQxBig0l_BrU341gTrUbNe6elWPWrWk-YhdrFr6Io1lH-hX68DcDMBMMjoHYRxV_AWShfGVcvG_d_wA0Idj84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768817452</pqid></control><display><type>article</type><title>Noninvasive liquid level sensing with laser generated ultrasonic waves</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Howuk ; Balagopal, Bharat ; Kerrigan, Sean ; Garcia, Nicholas ; Chow, Mo-Yuen ; Bourham, Mohamed ; Fang, Tiegang ; Jiang, Xiaoning</creator><creatorcontrib>Kim, Howuk ; Balagopal, Bharat ; Kerrigan, Sean ; Garcia, Nicholas ; Chow, Mo-Yuen ; Bourham, Mohamed ; Fang, Tiegang ; Jiang, Xiaoning</creatorcontrib><description>•Remote generation of guided ultrasonic wave (GUW) through pulsed laser for application to liquid level sensing.•Noninvasive, high-temperature, level sensing for liquid media contained in a metallic structure.•Prototyping and installation of the high-temperature GUW receivers that utilize piezoelectric single crystals.•Confirmation of the sensor performance through finite element analysis and high-temperature experiments.
This article proposes a noninvasive liquid level sensing technique using laser-generated ultrasound waves for nuclear power plant applications. Liquid level sensors play an important role of managing the coolant system safely and stably in the plant structure. Current sensing techniques are mostly intrusive, performing inside the fluidic structure, which is disadvantageous in terms of the regular maintenance of the plant system. Furthermore, typical intrusive sensors do not perform stably under varying environmental conditions such as temperature and radiation. In this study, sensing units are attached to the outer surface of a liquid vessel to capture guided ultrasound waves in a nonintrusive manner. The signal intensity of the guided wave dissipates when the signal interacts with the internal liquid media. The sensing mechanism is mathematically expressed as an index value to correlate the liquid level with the sensor signal. For the acoustic wave generation, laser-generated ultrasound was adopted instead of using typical contact type transducers. Following the simulation validation of the proposed concept, the performance of the developed sensor was confirmed through experimental results under elevated liquid temperature conditions. The nonlinear multivariable regression exhibited the best-fit to the datasets measured under the variable liquid level and temperature conditions.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2023.106926</identifier><identifier>PMID: 36682290</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><ispartof>Ultrasonics, 2023-04, Vol.130 (C), p.106926-106926, Article 106926</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-65a08ab33156b7a0e71ee78640f35db77d1e101c7831bf26698a256064fc0bbc3</citedby><cites>FETCH-LOGICAL-c435t-65a08ab33156b7a0e71ee78640f35db77d1e101c7831bf26698a256064fc0bbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0041624X23000021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36682290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1922262$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Howuk</creatorcontrib><creatorcontrib>Balagopal, Bharat</creatorcontrib><creatorcontrib>Kerrigan, Sean</creatorcontrib><creatorcontrib>Garcia, Nicholas</creatorcontrib><creatorcontrib>Chow, Mo-Yuen</creatorcontrib><creatorcontrib>Bourham, Mohamed</creatorcontrib><creatorcontrib>Fang, Tiegang</creatorcontrib><creatorcontrib>Jiang, Xiaoning</creatorcontrib><title>Noninvasive liquid level sensing with laser generated ultrasonic waves</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>•Remote generation of guided ultrasonic wave (GUW) through pulsed laser for application to liquid level sensing.•Noninvasive, high-temperature, level sensing for liquid media contained in a metallic structure.•Prototyping and installation of the high-temperature GUW receivers that utilize piezoelectric single crystals.•Confirmation of the sensor performance through finite element analysis and high-temperature experiments.
This article proposes a noninvasive liquid level sensing technique using laser-generated ultrasound waves for nuclear power plant applications. Liquid level sensors play an important role of managing the coolant system safely and stably in the plant structure. Current sensing techniques are mostly intrusive, performing inside the fluidic structure, which is disadvantageous in terms of the regular maintenance of the plant system. Furthermore, typical intrusive sensors do not perform stably under varying environmental conditions such as temperature and radiation. In this study, sensing units are attached to the outer surface of a liquid vessel to capture guided ultrasound waves in a nonintrusive manner. The signal intensity of the guided wave dissipates when the signal interacts with the internal liquid media. The sensing mechanism is mathematically expressed as an index value to correlate the liquid level with the sensor signal. For the acoustic wave generation, laser-generated ultrasound was adopted instead of using typical contact type transducers. Following the simulation validation of the proposed concept, the performance of the developed sensor was confirmed through experimental results under elevated liquid temperature conditions. The nonlinear multivariable regression exhibited the best-fit to the datasets measured under the variable liquid level and temperature conditions.</description><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOl7eQKS4ctMxtybpRpDBGwy6UXAX0vRUM3RSJ2k7-Pa2dHTpKhC-__znfAidEzwnmIjr1byr22DinGLKhi-RU7GHZkRJnua5UPtohjEnqaD8_Qgdx7jCmHBF2CE6YkIoSnM8Q_fPjXe-N9H1kNRu07kyqaGHOongo_Mfyda1n0ltIoTkAzwE00KZTNVD1CZb00M8RQeVqSOc7d4T9HZ_97p4TJcvD0-L22VqOcvaVGQGK1MwRjJRSINBEgCpBMcVy8pCypLAcJyVipGiokLkytBMYMEri4vCshN0Oc1tYut0tK4F-2kb78G2muSUUkEH6GqCvkKz6SC2eu2ihbo2HpouaiqFUkTybET5hNrQxBig0l_BrU341gTrUbNe6elWPWrWk-YhdrFr6Io1lH-hX68DcDMBMMjoHYRxV_AWShfGVcvG_d_wA0Idj84</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Kim, Howuk</creator><creator>Balagopal, Bharat</creator><creator>Kerrigan, Sean</creator><creator>Garcia, Nicholas</creator><creator>Chow, Mo-Yuen</creator><creator>Bourham, Mohamed</creator><creator>Fang, Tiegang</creator><creator>Jiang, Xiaoning</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>202304</creationdate><title>Noninvasive liquid level sensing with laser generated ultrasonic waves</title><author>Kim, Howuk ; Balagopal, Bharat ; Kerrigan, Sean ; Garcia, Nicholas ; Chow, Mo-Yuen ; Bourham, Mohamed ; Fang, Tiegang ; Jiang, Xiaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-65a08ab33156b7a0e71ee78640f35db77d1e101c7831bf26698a256064fc0bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Howuk</creatorcontrib><creatorcontrib>Balagopal, Bharat</creatorcontrib><creatorcontrib>Kerrigan, Sean</creatorcontrib><creatorcontrib>Garcia, Nicholas</creatorcontrib><creatorcontrib>Chow, Mo-Yuen</creatorcontrib><creatorcontrib>Bourham, Mohamed</creatorcontrib><creatorcontrib>Fang, Tiegang</creatorcontrib><creatorcontrib>Jiang, Xiaoning</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Howuk</au><au>Balagopal, Bharat</au><au>Kerrigan, Sean</au><au>Garcia, Nicholas</au><au>Chow, Mo-Yuen</au><au>Bourham, Mohamed</au><au>Fang, Tiegang</au><au>Jiang, Xiaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive liquid level sensing with laser generated ultrasonic waves</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2023-04</date><risdate>2023</risdate><volume>130</volume><issue>C</issue><spage>106926</spage><epage>106926</epage><pages>106926-106926</pages><artnum>106926</artnum><issn>0041-624X</issn><eissn>1874-9968</eissn><abstract>•Remote generation of guided ultrasonic wave (GUW) through pulsed laser for application to liquid level sensing.•Noninvasive, high-temperature, level sensing for liquid media contained in a metallic structure.•Prototyping and installation of the high-temperature GUW receivers that utilize piezoelectric single crystals.•Confirmation of the sensor performance through finite element analysis and high-temperature experiments.
This article proposes a noninvasive liquid level sensing technique using laser-generated ultrasound waves for nuclear power plant applications. Liquid level sensors play an important role of managing the coolant system safely and stably in the plant structure. Current sensing techniques are mostly intrusive, performing inside the fluidic structure, which is disadvantageous in terms of the regular maintenance of the plant system. Furthermore, typical intrusive sensors do not perform stably under varying environmental conditions such as temperature and radiation. In this study, sensing units are attached to the outer surface of a liquid vessel to capture guided ultrasound waves in a nonintrusive manner. The signal intensity of the guided wave dissipates when the signal interacts with the internal liquid media. The sensing mechanism is mathematically expressed as an index value to correlate the liquid level with the sensor signal. For the acoustic wave generation, laser-generated ultrasound was adopted instead of using typical contact type transducers. Following the simulation validation of the proposed concept, the performance of the developed sensor was confirmed through experimental results under elevated liquid temperature conditions. The nonlinear multivariable regression exhibited the best-fit to the datasets measured under the variable liquid level and temperature conditions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36682290</pmid><doi>10.1016/j.ultras.2023.106926</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2023-04, Vol.130 (C), p.106926-106926, Article 106926 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_osti_scitechconnect_1922262 |
source | Elsevier ScienceDirect Journals |
title | Noninvasive liquid level sensing with laser generated ultrasonic waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20liquid%20level%20sensing%20with%20laser%20generated%20ultrasonic%20waves&rft.jtitle=Ultrasonics&rft.au=Kim,%20Howuk&rft.date=2023-04&rft.volume=130&rft.issue=C&rft.spage=106926&rft.epage=106926&rft.pages=106926-106926&rft.artnum=106926&rft.issn=0041-624X&rft.eissn=1874-9968&rft_id=info:doi/10.1016/j.ultras.2023.106926&rft_dat=%3Cproquest_osti_%3E2768817452%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768817452&rft_id=info:pmid/36682290&rft_els_id=S0041624X23000021&rfr_iscdi=true |