Noninvasive liquid level sensing with laser generated ultrasonic waves

•Remote generation of guided ultrasonic wave (GUW) through pulsed laser for application to liquid level sensing.•Noninvasive, high-temperature, level sensing for liquid media contained in a metallic structure.•Prototyping and installation of the high-temperature GUW receivers that utilize piezoelect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2023-04, Vol.130 (C), p.106926-106926, Article 106926
Hauptverfasser: Kim, Howuk, Balagopal, Bharat, Kerrigan, Sean, Garcia, Nicholas, Chow, Mo-Yuen, Bourham, Mohamed, Fang, Tiegang, Jiang, Xiaoning
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Remote generation of guided ultrasonic wave (GUW) through pulsed laser for application to liquid level sensing.•Noninvasive, high-temperature, level sensing for liquid media contained in a metallic structure.•Prototyping and installation of the high-temperature GUW receivers that utilize piezoelectric single crystals.•Confirmation of the sensor performance through finite element analysis and high-temperature experiments. This article proposes a noninvasive liquid level sensing technique using laser-generated ultrasound waves for nuclear power plant applications. Liquid level sensors play an important role of managing the coolant system safely and stably in the plant structure. Current sensing techniques are mostly intrusive, performing inside the fluidic structure, which is disadvantageous in terms of the regular maintenance of the plant system. Furthermore, typical intrusive sensors do not perform stably under varying environmental conditions such as temperature and radiation. In this study, sensing units are attached to the outer surface of a liquid vessel to capture guided ultrasound waves in a nonintrusive manner. The signal intensity of the guided wave dissipates when the signal interacts with the internal liquid media. The sensing mechanism is mathematically expressed as an index value to correlate the liquid level with the sensor signal. For the acoustic wave generation, laser-generated ultrasound was adopted instead of using typical contact type transducers. Following the simulation validation of the proposed concept, the performance of the developed sensor was confirmed through experimental results under elevated liquid temperature conditions. The nonlinear multivariable regression exhibited the best-fit to the datasets measured under the variable liquid level and temperature conditions.
ISSN:0041-624X
1874-9968
DOI:10.1016/j.ultras.2023.106926